
Kent Lindquist White Paper

Number 1998-001

Creating a Framemaker Macro from a Perl
Script

Kent Lindquist
Sept. 9, 1998

Creating a FrameMaker macro from a PERL script
Kent Lindquist, 1998

Framemaker 5.5 and Perl 5.4.3

FrameMaker macros can be saved in a file. That file under normal conditions is called fmMacros.
FrameMaker can find this file in a number of places, including the current working directory. Here
is an example of an fmMacros file. There are two macros in this file. The first macro is triggered
by a Cntl-1 pressed in an open copy of a particular FrameMaker template document of mine. This
macro is fairly complex. It takes the template, fills in some text about a recent earthquake, and
puts in a picture of the earthquake’s location. The second macro in this file, triggered by a Cntl-3,
merely prints the current document and exits FrameMaker.

 1: Macros saved on Tue Sep 8 18:28:19 AKDT 1998
 2:
 3: aeic release macro:
 4: <Macro Macro2
 5: <Label Macro2>
 6: <Trigger ^1>
 7: <TriggerLabel ^1>
 8: <Definition \!fa/START_DIALOG ^/Tab /End
 9: ^u⁄home⁄kent⁄work⁄response⁄980825172246⁄myrelease.fm/Return /END_DIALOG
10: \!fif/START_DIALOG ^/Tab /End
11: ^u⁄home⁄kent⁄work⁄response⁄980825172246⁄aeic_release.makertext/Tab /Tab /Tab
 \s/Tab
12: /Return /END_DIALOG /START_DIALOG /Tab ^/Tab /Tab /Return /END_DIALOG
13: /START_DIALOG ^/Tab /Tab \s/Tab /Tab /Tab /Return /END_DIALOG
14: \!fif/START_DIALOG ^/Tab /End ^u⁄home⁄kent⁄work⁄response⁄980825172246⁄db_rel
ease.epsi
15: /Tab /Tab /Tab \s/Tab /Return /END_DIALOG
16: \!go/START_DIALOG ^/Tab /Tab /Tab /End ^u3.375/Tab /End ^u4.694
17: /Tab /Tab /Tab /Tab /Tab /Tab /Tab /Return /END_DIALOG \!fs
18: >
19: <Mode NonMath>>
20:
21: aeic closeout macro:
22: <Macro Macro3
23: <Label Macro3>
24: <Trigger ^3>
25: <TriggerLabel ^3>
26: <Definition \!fp/START_DIALOG /Return /END_DIALOG
27: \!fc
28: >
29: <Mode NonMath>>

Now we’re going to pick this apart a bit. The line numbers are not in the original file. I added them
for discussion.

 Lines one through three contain boring stuff. Actually lets look at the second macro. It is
entirely contained in the angle brackets on lines 22 and 29. Inside is a a label, contained in angle
brackets on line 23. Boring. Line 24 says that hitting control-3 in a framemaker document will
make the macro do it’s work. Line 25 seems redundant but who are we to argue. The definition of
the macro, i.e. the statement of what work it will do, is contained entirely within angle brackets on
lines 26 through 28. On line 26, you’ll see that the first phrase is <Definition \!fp. If you’re familiar
with the keyboard shortcuts that you can use in FrameMaker, you know that Escape-f-p brings up
the dialog box for printing. That’s what we just said in the macro: \! means the escape key, and f
and p mean “file” menu and “print” option. The rest of what we’re going to do in the dialog box is
bracketed by the /START_DIALOG and /END_DIALOG keywords. Note that the forward-slash char-
acter, /, is a special one in framemaker macros. The default action for this dialog box is to print
out the current document, and hitting a return key in the print dialog box prints the document out.
Therefore the only thing we have in our macro for this dialog box is to hit the return key, indicated
by /Return. This macro ends by closing the current document. The keyboard shortcut for that is
escape-c-b, so the macro, on line 27, reads \!fc.

That’s the basic pattern for a macro as described in the fmMacros file. Now lets look at a few
things in the more complicated macro. This macro starts out by launching the file->save as dialog
box. This happens on line 8 with \!fa/START_DIALOG. Tab keys are used to navigate amongst the
fields in a dialog box. In this case, we use Control-Tab, indicated in the macro by ^/Tab, in order
to go to the first field of the dialog box. We might be there already but you have to be sure. This
first field of the save-as dialog box is where you put in the filename you want to save your docu-
ment under. It might not be empty, though. Therefore, at the end of line 8, we put /End to go to the
end of what’s in the text-entry box. At the beginning of line 9, we put a Cntl-u, indicated with ^u,
to flush out whatever’s in the text-entry field. Then we just enter the pathname we want, followed
by a return character and the /END_DIALOG delimiter. You’ll notice this same pattern in the rest of
the macro: go to the beginning of the dialog box, tab through to set the fields you want. For each
field where we’re entering text, first empty out the text-entry field by going to the end of it and
typing Cntl-u. By the way, the reason the first step of the macro is saving the document is that I
want to register the correct filename rather than having someone accidentally obliterate my tem-
plate. That’s basically all of the macro. On line 15 there’s a \s from where I changed the state of a
little radio-button click box. Line 16 enters some numbers, which are the measurements in inches
needed to position my imported picture correctly on the page.

 Now we need to create this macro from Perl. Here we go, once again introducing line num-
bers:

1: sub write_fm_macro {
 2:
 3: $makertextcode = “$release_dir/$event_timestr/$makertextfile”;
 4: $makertextcode =~ s@/@\\/@g;
 5:
 6: $fmrelease_filecode = “$release_dir/$event_timestr/$fmrelease_file”;
 7: $fmrelease_filecode =~ s@/@\\/@g;
 8:
 9: $map_epsi_filecode = “$release_dir/$event_timestr/$map_epsi_file”;
10: $map_epsi_filecode =~ s@/@\\/@g;

11:
12: $date = `date`;
13:
14: $fmmacro = <<“ EOMACRO”;
15: Macros saved on $date
16: aeic release macro:
17: <Macro Macro2
18: <Label Macro2>
19: <Trigger ^1>
20: <TriggerLabel ^1>
21: <Definition \\!fa/START_DIALOG ^/Tab /End
22: ^u$fmrelease_filecode/Return /END_DIALOG
23: \\!fif/START_DIALOG ^/Tab /End
24: ^u$makertextcode/Tab /Tab /Tab \\s/Tab
25: /Return /END_DIALOG /START_DIALOG /Tab ^/Tab /Tab /Return /END_DIALOG
26: /START_DIALOG ^/Tab /Tab \\s/Tab /Tab /Tab /Return /END_DIALOG
27: \\!fif/START_DIALOG ^/Tab /End ^u$map_epsi_filecode
28: /Tab /Tab /Tab \\s/Tab /Return /END_DIALOG
29: \\!go/START_DIALOG ^/Tab /Tab /Tab /End ^u3.375/Tab /End ^u4.694
30: /Tab /Tab /Tab /Tab /Tab /Tab /Tab /Return /END_DIALOG \\!fs
31: >
32: <Mode NonMath>>
33:
34: aeic closeout macro:
35: <Macro Macro3
36: <Label Macro3>
37: <Trigger ^3>
38: <TriggerLabel ^3>
39: <Definition \\!fp/START_DIALOG /Return /END_DIALOG
40: \\!fc
41: >
42: <Mode NonMath>>
43:
44: EOMACRO
45:
46: $fmmacro =~ s/^\t//;
47: $fmmacro =~ s/\n\t/\n/g;
48:
49: open(M, “>fmMacros”);
50:
51: print M $fmmacro;
52:
53: close(M);
54: }

The strategy here is to construct the whole macro in the variable $fmmacro, then write that macro
out in one big blast to the appropriate file. Writing the variable out to the file fmMacros is actually
just straightforward Perl, on lines 49 through 53. The procedure to fill in $fmmacro is simply to
make a multi-line quote. Normally in perl you can do this with the construct

$moo = “some stuff”;

$myquote=<<ENDOFQUOTE;
some interesting
text, possibly with the value of some variable called moo
interpolated into the text right here: $moo
ENDOFQUOTE

This is basically what we do. However, this requires that all the lines are justified to the left side of
the page. If we’re indenting the subroutine so the Perl code looks halfway readable, we need to get
a little bit fancy. We add a tab character in front of each line; in front of the “ENDOFQUOTE”
designator; and then remove those tab characters later. This means that our multi-line quote exam-
ple above now says

$moo = “some stuff”;

 $myquote=<<“ ENDOFQUOTE”;
 some interesting
 text, possibly with the value of some variable called moo
 interpolated into the text right here: $moo
 ENDOFQUOTE

We remove these extra tab characters with lines 46 and 47 of the perl script above. This is a small
concession to readability in the script, which is bad enough to begin with.
 There are a few differences between the macro as it appears in the perl script and the macro
as it appears in the final output file. First of all, the backslash character \ in the macro will mean
something in perl--something it’s not supposed to mean, in fact. Therefore, every backslash char-
acter in the macro must appear as \\ in the perl script so the Perl interpreter doesn’t gobble it
up.The first easy example of this is on line 21 of the perl script, corresponding to line 8 of the fm
macro. Another example is on line 28 of the perl script, corresponding to line 15 of the fm macro.

Next, the forward slash / means something to FrameMaker. Therefore if we want to use path-
names in the macro that contain forward slashes, we have to put a backslash in front of them like
this \/ to keep from confusing framemaker. Again, though, now perl will want to interpret that
backslash, so we have to put another in front of it in the perl script, so it looks like \\/. Now actu-
ally in the perl script all of our file names are in variables, so this substitution happens with a reg-
ular-expression substitution on each filename-variable, ie three times in lines 3 through 10.
 At this point the hardest part of making a perl script that generates an fmMacros descriptor
file will probably be finding the “Start recording macro now” button in FrameMaker, so you can
build yourself an initial template macro and then save it.The macro commands are under file-
>utilities.

