ICEWEB TALK Japan, March 1999

THE ICEWEB SYSTEM

Near-Real-Time Seismic Monitoring of Alaskan Volcanoes on the World-Wide-Web

Glenn Thompson, John Benoit, Kent Lindquist, Roger Hansen & Steve McNutt

Alaska Volcano Observatory, Fairbanks, Alaska.

February, 1999

Introduction

- Alaska Volcano Observatory (AVO) seismically monitors 19 volcanoes in Alaskan Peninsula and Aleutian Islands
- Main threat is from volcanic ash to air traffic travelling between North America and Asia
- AVO is not a 24-hour operation, so need an automated system that monitors seismic signals from these volcanoes in nearreal-time

Volcanoes monitored by the IceWeb system

IceWeb takes the last 10 minutes of data from the ICEWORM Database every 10 minutes, and produces a reduced displacement and a spectrogram plot for every volcano listed in the IceWeb control file. These plots are linked to the AVO internal page (along with other near-real time seismic, satellite and weather data) enabling scientists to monitor activity whether they are in the office, at home or elsewhere. Alarms are automatically paged to a scientist on 24-hour duty whenever a significant increase in reduced displacement is detected.

IceWeb

IceWeb is a near-real-time system for monitoring the seismic activity at Alaskan Volcanoes. The system has two main parts:

- Plots of Reduced Displacement and Spectrograms and Filtered Helicorders on the World-Wide Web, updated every 10 minutes.
- An alarm system that monitors the amplitude of reduced displacement and sends alarms by beeper to a seismologist on 24-hour duty when significant increase in this signal occurs.

IceWeb and AVO

IceWeb was developed during the Pavlof 1996 eruption, and proved to be a very useful tool. AVO seismologists now depend on it:

- · Can keep web-page running while working it updates
- Can check seismicity from home, during the night (e.g. Shishaldin now)
- Can check while travelling (e.g. me here)
- · Scientists around the world can examine data

Shishaidin 26-Oct-1999 18:32:55 UT

Filter: BW 0.8 5 5.0 5

BRTT dbbell: /homo/glenn/ICEWEB/PSEUDO_HELICORDER_PLOTS/pavarc_960911 PV60911f.ps glenn Tue Dec 1 15:05:14 1998

Alarm System

IceWeb looks for significant trends in reduced displacement data and sends automated alarms by email and pager

Two step algorithm:

Station Triggering

Trigger if:

- D_R now > average (D_R last hour)
- D_R now > average (2 * D_R last day)
- D_R now > average (2 * D_R last 3 days)
- 4. Maximum frequency in the signal > 0.8 Hz

Alarm

- Sent by pager to a seismologist on 24-hour duty if AT LEAST HALF of the stations trigger for any particular volcano
- Also sent by email

Subject: ICEWEB alarm at Shishaldin volcano

This is an automated alarm generated by the IceWeb system Increasing Dr detected at SSLS SSLN SSLW

Av Dr(cm^2) over different time periods

STA	Now	hour	day	3days	f(Hz)
SSLS:	4.51	3.73	1.53	1.61	0.9
SSLN:	5.63	4.96	1.89	1.74	1.1
SSLW:	3.97	3.82	1.82	1.63	1.7
ISTK:	2.59	2.20	1.30	1.38	0.8
WTUG:	2.02	2.11	1.57	1.40	0.8

Further Work

- IceWeb has so far been applied to 14 volcanoes limitation is processing speed (Sun Sparc Ultra 10) – apply to all volcanoes
- So far written primarily in Matlab rewrite in Java and make it a true real-time system (applets)
- Add utilities to enable clients to request any type of data (reduced displacement, spectrogram, SSAM, filtered helicorder) for any volcano and any time period
- Improve the alarm algorithm using statistical tests to detect tremor signal from the background of storm and wind related noise