
CHAPTER FOUR

K- MODELLING METHOD FOR AN

INFINITE SOLID

4.1 Introduction

4.1.1 Purpose of this chapter

In  this  chapter  a  more  sophisticated  modelling  technique  (the  k- method)  is

presented.  The  method  assumes  the  conduit  is  a  vertically  oriented,  partially

viscous fluid filled cylinder embedded in an infinite solid. Perturbations in matched

boundary conditions at the conduit wall allow moving and extended sources to be

modelled in addition to point sources. This is an important breakthrough in volcano

seismology. Even if these other sources are found not to be applicable to volcano-

seismic signals,  at least they can now by rejected on a quantitative basis,  rather

than through laziness or ignorance.

The  method  was  derived  from  first  principles,  but  follows  an  outline  given  by

Theisse [1996], However, the treatment here is much more thorough and rigorous,

and uses a much improved nomenclature. The method has also been extended to

include several  new source types [Section 4.4],  including advective overpressure

which is described by a line source,  and a rising magma source with a pressure

gradient; these are derived in full. Some of the mathematics for this method cannot

be found in previously published work and is included in Appendices.

The method is thoroughly tested in Section 4.5, which is entirely original work, prior

to its application to Stromboli in Chapter 5.
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4.1.2 Review of modelling techniques

Broadband recordings such as those at Stromboli [Neuberg et al., 1994] and Aso

volcano  [Kaneshima  et  al.,  1996]  have  revealed  long-period  phases  that  are

believed to be a direct response to the magma movement or pressurization of the

volcanic edifice. In order to understand these signals, modelling is required.

A dilatational point source [Anderson, 1936;  Mogi, 1958] can be used to estimate

the depth and volume change of a spherical magma chamber, and a simple formula

can be used to estimate  the pressure change required to cause such a volume

change. This ‘Mogi’ source is static and can be used very effectively to model the

deformation of the free surface in response to a change in source volume at a given

depth, but it cannot  be used directly to calculate seismograms. Neither can it be

used directly to model moving sources or extended sources. The decay law method

presented in Chapter 3 is similar to the Mogi model, but more useful for seismology

because both near and far field terms are considered,  and because line sources

can also be modelled.

The  opposite  extreme  is  to  use  finite  element  modelling  [Stephen  et  al.,  1985;

Randall  et  al., 1991;  Ohminato  and  Chouet,  1997].  With  such  a  technique  the

physical parameters of each model element are initialised, and then the model is

evolved, each element following a set of simplified physical laws. Such a method is

computationally  expensive,  and  difficult  to  modify,  but  given  sufficient  time  and

perseverance, models of any complexity can be computed to any level of precision.

Boundary element methods have been implemented by several authors to calculate

synthetic  borehole  seismograms  in  a  half-space  and  in  a  horizontally  stratified

medium  [e.g.  Bouchon, 1993;  Dong  et  al.,  1995].  The  technique  is  based  on

Huygens’  principle: several  points along the cylindrical  borehole boundary act as

secondary sources for a primary source in the fluid. The parallels between a fluid-

filled cylindrical borehole and a vertically oriented volcanic conduit are obvious.

The method described in this chapter  is also derived from borehole  seismology.

Assuming a cylindrical fluid-filled borehole, Biot [1952] solved the wave equation in

the  wavenumber-frequency  domain1,  assuming  continuity  of  radial  stress  and

displacement  at  the  borehole  wall,  in  order  to  study  interface  waves  (Stoneley

waves) propagating in the vicinity of the borehole wall.  Cheng and Toksoz [1980]

took  this  method  a  little  further  and  investigated  another  wave  type  (‘pseudo-

1 This is done because it makes the mathematics easier; see equation A-18.
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Rayleigh’  waves),  and  calculated  synthetic  micro-seismograms.  Theisse [1996]

adapted  this  method  for  modelling  the  deformation  at  volcanoes  by  introducing

pressure and shear stress fluctuations at the conduit wall, which can be employed

to simulate any type of  source.  This method is further developed here  and new

types of moving and extended sources are introduced, as these may be relevant for

very long period seismic signals and deformation signals, such as those observed

at  Stromboli  and  Aso.  Because  the  method  is  based  on  a  set  of  analytic

calculations, computation is relatively quick.

4.1.3 Model description

The aim is to calculate the seismic wavefield resulting from pressure fluctuations in

a  volcanic  conduit.  The  conduit  is  cylindrical,  (partially)  filled  with  viscous  fluid,

orientated vertically and embedded in an infinite elastic solid [Fig. 4.1]. Both media

are assumed to  be homogeneous  and isotropic  which allows the P-SV and SH

problems to be dealt  with independently. The SH problem is not considered here

since  there  is  no  obvious  way  to  generate  SH waves  with  this  geometry.  The

symbols used in this chapter are listed in table 4.1 (below).

Symbol Description Reference

r Radial coordinate

z Vertical coordinate

t Time

g Gravity, 9.8 m/s

l Conduit length

 3.1415927

i Square root of -1

 Density Equation 4-23

 P wave displacement potential Equation 4-1

 Vector SV wave displacement potential Equation 4-2

 Scalar SV wave displacement potential Equation 4-3

k Wavenumber vector Section 4.2.1

kz Vertical component of wavenumber vector Equation 4-5

e Unit vector in  direction Equation 4-3

 Angular frequency
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 P wave speed

 S wave speed

K0, K1 Modified Bessel functions of first kind, of orders 0 and 1

I0, I1 Modified Bessel functions of second kind, of orders 0 and 1

lp Radial wavenumber for P waves Equation 4-7

ls Radial wavenumber for S waves Equation 4-8

A, B Coefficients of the P wave equation Equations 4-5

C, D Coefficients of the S wave equation Equations 4-6

v Vertical phase velocity (or magma rise speed) Equation 4-12

u Displacement Section 4.2.3

ur Radial displacement Equation 4-14

uz Vertical displacement Equation 4-14

,  Lame (elastic) parameters.  is also used for wavelength. Equation 4-17

r0 Radial coordinate of conduit wall Section 4.3.1

P Presure perturbation Equation 4-43

 Shear stress perturbation Eqaution 4-4-4

L Source separation along z-axis Equation 4-49

us Displacement at seismometer Equation 4-57

V Change in volume Equation 4-61

s Incompressibility of solid Equation 4-63

2

1

)( t
ttB

Boxcar function from t0 to t1 Appendix E

)( ottH  Heaviside (step) function at t0 Appendix E

Table 4.1: List of symbols used in Chapter 4.
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Figure 4.1: The technique assumes a cylindrical, vertical oriented conduit, partially

filled with viscous magma. The magma may be rising with some speed v, in which

case the distribution of pressure and shear stress forces along the conduit wall will

change  with  time.  Pressure  forces,  which  act  radially,  generate  P waves;  shear

stress forces act vertically downwards and generate SV waves. Alternatively, there

may be a source in the fluid - which could arise from explosive degassing.  This

generates  inhomogeneous  P  and  S  waves  at  the  conduit  wall  leaking  into  the

elastic solid.
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4.2 P-SV wavefield

4.2.1 Solution  of  the  wave  equation  in  cylindrical  co-

ordinates

In  order  to  derive  expressions  for  the displacement  and stress  in cylindrical  co-

ordinates it is necessary to solve the wave equation. The scalar wave equation for

P waves in cylindrical co-ordinates is:

  


: : : :rr r zz tt
r

  
1 1

2
(4-1)

where the P wave displacement potential  =(r,z,t) and  is the P wave speed.

The vector wave equation for S waves in cylindrical co-ordinates is:

    : : : : :rr r zz tt
r r

   
1 1 1

2 2 
(4-2)

where  is the S wave speed and the SV wave displacement potential is:

( , , , ) ( , , )r z t r z t   e (4-3)

Here (r,z,t) is the scalar SV displacement potential and e is the unit vector in the

direction  perpendicular  to  wave  propagation  (described  by  wavenumber  k)  and

particle motion. But e: = -e, which gives:

   


: : : :rr r zz tt
r r

   
1 1 1

2 2 (4-4)

Solutions to 4-1 and 4-4 in the kz- domain are respectively [Appendix A]:

)()(),,( 00 rlBIrlAKkr ppz  (4-5)

)()(),,( 11 rlDIrlCKkr ssz  . (4-6)

where radial wavenumbers lp and ls are given by:

84



l kp z
2 2

2

2 



(4-7)

l ks z
2 2

2

2 



(4-8)

and Kn and  In are the  nth order modified Bessel functions. (Only modified Bessel

functions  are  used  because  normal  Bessel  functions  describe  inhomogeneous

waves). The two-dimensional Fourier transform of f(kz,) is given by:




 dedkekftzf ti
z

zik
z

z 


















 ),(

2
1

2
1

),( . (4-9)

For convenience a shorthand notation is adopted such that 4-5 and 4-6 become

respectively:

 ( , , )r k AK BIz p p 0 0 (4-10)

 ( , , )r k CK DIz s s 1 1 (4-11)

the additional subscript on the Bessel function indicates which radial wavenumber

(P or S wave) the Bessel function operates on. For the P wave (Bessel functions

with  a  subscript  p)  the  argument  of  the  Bessel  function  is  lpr.  For  the  S  wave

(Bessel functions with a subscript s) the argument of the Bessel function is lsr.

4.2.2 Physical interpretation of solutions to wave equation

The wave equation solutions in 4-10 and 4-11 can be thought of as describing the

wavefield in terms of an infinite sum of plane waves propagating out from the origin

at all wavelengths and at all angles. This is because 4-5 and 4-6 are approximately

the mathematical expression of a plane wave. 

By  summing  over  all  frequencies  for  constant  vertical  wavenumber,  the  radial

wavenumber expressed in 4-7 and 4-8 changes,  i.e. the direction of plane wave

propagation  changes.  By  summing  over  all  frequencies  and  all  vertical

wavenumbers,  the phase  speed  of  the plane  wave  takes  all  values  too.  Phase

speed is given by:
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v
k z

 


(4-12)

The superposition of these waves results in spherical  waves,  which means near-

field effects can be accounted for. [See Appendix B for more details].

4.2.3 Near field effects

At Stromboli in 1992 and 1995 the seismic stations were less than 1 wavelength

from the source region for frequencies below ~ 1Hz, so it is necessary to model

near-field  effects.  (Some  modelling  methods  include  only  far  field  effects,  and

others only near field effects, e.g. the Mogi model). To include both the solution is

decomposed into an infinite sum over plane waves (i.e. by integration). Therefore

an infinite number of far field problems are solved, which are simple, rather than

solve the near field problem directly. In practice a finite number of far field problems

are solved  (by adjusting  the limits  of  integration)  -  the more included,  the  more

accurately that near field terms are accounted for. 

4.2.4 Displacement

Continuity of displacement is one of the boundary conditions which applies in this

model. In order to use that boundary condition, an expression for displacement,  u

(r,z,t),  in terms of  P and SV wave  potentials  in cylindrical  co-ordinates  must  be

derived. Displacement in an infinite homogeneous space is given by:

u( , , )r z t       (4-13)

where  is the scalar P-wave potential, and =e is the vector SV-wave potential

in the axially-symmetric case. Hence u may be written as:

   u( , , ) ( , , ), , ( , , ) , ,; ; ; ;r z t u r z t u r z t rr z r z z r     0 0 1     (4-14)

Now using the following relations for derivatives of the modified Bessel functions,

K0, K1, I0 and I1 [Appendix C] and equations 4-10 and 4-11 the derivatives in 4-14

can be expressed in terms of coefficients A, B, C and D as:
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 
 

   
 

 

 

 

 

;r

;

;r

( , , )

( , , )

( , , )

( , , )

r k l BI AK

r k ik AK BI

r k D l I I r C l K K r

r k ik CK DI

z p p p

z z z p p

z s s s s s s

z z s s

 

  

   

  

 

1 1

0 0

0 1
1

0 1
1

1 1;z

Hence 4-14 can be expressed in components as:

u r k l AK BI ik CK DIr z p p p z s s( , , ) ( ) ( )     1 1 1 1 (4-15)

u r k ik AK BI l DI CKz z z p p s s s( , , ) ( ) ( )     0 0 0 0 (4-16)

4.2.5 Stress

Continuity of stress is a boundary condition for this model. In order to apply this,

expressions for stress components in terms of P and SV wave potentials must be

derived. When axial symmetry holds the only non-zero components of the stress

tensor are  rr (normal  stress),rz (shear stress),   and  zz. In the P-SV problem

only the first two are constrained. For an elastic medium these are (Hooke’s Law):

  rr rre  ( . )u 2 (4-17)

 rz rze 2 (4-18)

where  err and  erz are components of the strain tensor and   and   are the Lamé

parameters. Expressing these in terms of displacement gives:

  rr r r r z z r ru u r u u   ( ); ; ;
1 2 (4-19)

 rz r z z ru u ( ); ; (4-20)

Expressing these in terms of P and S wave potentials by using 4-14 gives:

          rr rr r zz rr rzr    
; ; ; ; ;

1 2 (4-21)

87



       rz rz zz rr rr r     2 2 1
; ; ; ; (4-22)

Then using the relations:

   2 2 (4-23)

  2 (4-24)

where   is density,  and   and   are the P and S wave velocities respectively. It

follows that:

           rr rr r zz r zz rzr r      2 1 2 12; ; ; ; ; ; (4-25)

       rz rz zz rr rr r     2 2 12 ; ; ; ; (4-26)

Finally using the wave equations 4-1 and 4-4 to eliminate second derivatives w.r.t r

gives:

        rr tt r zz rzr   
; ; ; ;2 2 1 (4-27)

       rz tt rz zz  ; ; ;2 2 (4-28)

Now substituting for derivatives of K0, K1, I0 and I1 [Appendix C], and using 4-10 and

4-11, each of the terms in 4-27 and 4-28 can be expressed in terms of coefficients

A, B, C and D:

 
 

 
 

  

 

 

 

;tt

;r

;

;rz

( , , )

( , , )

( , , )

( , , )

r k AK BI

r k l BI AK

r k k AK BI

r k ik l BI AK

z p p

z p p p

zz z z p p

z z p p p

  

 

  

  

2
0 0

1 1

2
0 0

1 1

    
 
 

 

  

 

;rz

;tt

( , , )

( , , )

( , , )

r k ik D l I I r C l K K r

r k CK DI

r k k CK DI

z z s s s s s s

z s s

z z s s

    

  

  

 
0 1

1
0 1

1

2
1 1

2
1 1;zz
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Hence 4-27 and 4-28 become:

 )()(2

)(2))(2(),,(
1

10
1

10

11
1

00
2221









rIIlDrKKlCik

BIAKrlBIAKkkr

ssssssz

pppppzzrr 
(4-

29)

)(2))(2(),,( 1111
2221

pppzsszzrz BIAKlikDICKkkr    (4-30)

The stress components in their most useful form are obtained by replacing  using
4-8:

 
  rr z z s p p p p p

z s s s s s s

r k k l AK BI l r AK BI

ik C K r l K D I r l I

( , , ) ( )( ) ( )

( ) ( )

 

 

    

   

1 2 2
0 0

1
1 1

1
1

0 1
1

0

2

2
(4-31)

)(2))((),,( 1111
221

pppzssszzrz BIAKlikDICKlkkr  (4-32)

4.2.6 Displacement and stress in the fluid

Since the fluid is viscous, P and SV waves can propagate within it. Using 4-15, 4-

16,  4-31 and 4-32 the displacement  and stress  components  in the fluid  can  be

written as:

u r k l A K B I ik C K D Irf z pf f pf f pf z f sf f sf( , , ) ( ) ( )     1 1 1 1 (4-33)

u r k ik A K B I l D I C Kzf z z f pf f pf sf f sf f sf( , , ) ( ) ( )     0 0 0 0 (4-34)

 
  rrf z f z sf f pf f pf pf f pf f pf

z f sf sf sf f sf sf sf

r k k l A K B I l r A K B I

ik C K r l K D I r l I

( , , ) ( )( ) ( )

( ) ( )

 

 

    

   

1 2 2
0 0

1
1 1

1
1

0 1
1

0

2

2

(4-35)

)(2))((),,( 1111
221

pffpffpfzsffsffsfzfzrzf IBKAlikIDKClkkr 

(4-36)

where the extra subscript f denotes parameters of the fluid.
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4.2.7 Displacement and stress in the solid

The displacement and stress components in the solid can be written as:

u r k l A K B I ik C K D Irs z ps s ps s ps z s ss s ss( , , ) ( ) ( )     1 1 1 1 (4-37)

u r k ik A K B I l D I C Kzs z z s ps s ps ss s ss s ss( , , ) ( ) ( )     0 0 0 0 (4-38)

 
  rrs z s z ss s ps s ps ps s ps s ps

z s s ss ss s ss ss ss

r k k l A K B I l r A K B I

ik C K r l K D I r l I

( , , ) ( )( ) ( )

( ) ( )

 

 

    
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1
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(4-39)

)(2))((),,( 1111
221

psspsspszsssssssszszrzs IBKAlikIDKClkkr  (4-40)

where the extra subscript s denotes parameters of the solid.

4.3 Infinite solid

4.3.1 Boundary conditions at the conduit wall

This  is  the  case  considered  by  Theisse [1996].  There  must  be  continuity  of

displacement  and  stress  at  the  conduit  wall,  r=r0.  This  is  true,  even  for  shear

components, since there can be no slip on a boundary between a viscous fluid and

a solid. In the P-SV problem this gives four equations:

)()( 00 ruru rsrf  (4-41)

)()( 00 ruru zszf  (4-42)

Prr rrsrrf  )()( 00  (4-43)

  )()( 00 rr rzsrzf (4-44)
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where  P(a,z,t) and  (a,z,t)  are perturbations  to  the  normal  pressure  field and

shear stress field, respectively.

The  boundary  conditions  4-41  to  4-44  must  now  be  written  in  terms  of  the

coefficients Af, Bf, Cf, Df, As, Bs, Cs and Ds since these must be determined in order

to calculate synthetic seismograms. Solutions of the wave equation which include I0

and  I1 cannot  exist  in  the  unbounded  solid,  since  these  functions  behave

exponentially for large  r, which is not physically meaningful (however they can be

used in the fluid since that is bounded in the radial direction). Hence the coefficients

Bs and Ds , in 4-37 to 4-40, must be zero. Similarly K0 and K1 tend towards infinity as

r decreases, which means that Af and Cf can only be used to represent sources in

the fluid. Physically  Af represents a P wave point source, and  Cf represents an S

wave point source, at the origin. These sources are known inputs into the model.

Shear failure within the viscous fluid is not considered here, so S wave sources are

not considered (these are eliminated by setting Cf=0; see Appendix D for more on

the behaviour of the modified Bessel functions). The upshot is that four equations in

four unknowns remain. 

These four simultaneous equations can now written in matrix form  Ax=d+y,  with

(known) source terms on the right, and the unknown coefficients (the vector  x) on

the left:
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(4-45)

The matrix A and vector y come from combining the relations for displacement and

stress in the fluid (4-33 to 4-36) and in the solid (4-37 to 4-40) with the boundary

conditions above (4-41 to 4-44) noting that Bs=Ds=Cf=0. The source terms, vectors

d and y, are discussed in section 4.4. Explicity this matrix equation is: 
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The aim is to find x=A-1 (d+y) by inversion using a computer. Once x is found, the

coefficients  As and  Cs are  known,  so  4-37  and  4-38  can  be  used  to  calculate

synthetic seismograms. This gives the solution for any given combination in the kz-

 domain, but it is the solution in the (z,t) domain that is required. To get this, first

note that by 4-9, the displacement in the solid, us(z,t), is given by:

u us s z
ik z

z
i tk e dk e dz(z, t) 
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2 
 ( , ) , (4-46)

This is just a 2-dimensional Fourier transform. To evaluate this on a computer the

continuous integrals must be replaced by a discrete sum. This is done by using the

discrete wavenumber method.

4.3.2 Discrete wavenumber method

The method  of  discrete  wave numbers  was first  described  by Bouchon  and Aki

[1977] and consists of a discretization of the Fourier transform and the introduction

of complex frequencies.

The Fourier transform:
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becomes:
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The series is convergent with the number N being determined by trial and error. The

effect of discretization in the wavenumber domain is to introduce periodic sources in

space situated at a distance L apart along the z-axis where:




k
L

z 
2

(4-49)

These fictitious sources are not wanted.  They can be removed from the solution

altogether by making L so large that arrivals from even the closest fictitious source

will not arrive until after the time window of interest. Such an approach is not always

preferred because execution time can become very long. An alternative approach is

to introduce a constant imaginary part to the frequency:

0 iir withi  (4-50)

this has the effect of damping the (later) arrivals from the fictitious sources and so

considerably reducing the problem of spatial aliasing. In addition, the singularities of

f(r,kn,) which lay on the real kz-axis are now shifted into the 2nd and 4th quadrants

[Appendix D] of the complex plane.

The introduction of a complex frequency also affects the time Fourier transform:

tittiiti riir eeee    )( (4-51)

This compensates for the attenuation of later arrivals already discussed. Hence the

time Fourier transform:
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(4-52)

becomes:
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For computational purposes this formula is replaced by its discrete form:
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where:

t
c

M
c

r


2


(4-55)

and:
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Hence 4-46 becomes:

cmn

ci
ti

M

Mm

N

Nn

zik
zs

z
m

t

s eek
ke 









  
 

 







 ),(

22
)t(z, c uu (4-57)

4.3.3 Summary and coding

Synthetic seismograms are calculated by solving 4-57. In order to find us(kz,), the

boundary conditions in the (kz,)-domain must first be solved in order to find the

coefficients As and Cs. us(z,) is then formed by repeating this process for all kz of

interest and summing the result. Practically the summation over frequencies can be

performed by using an FFT which speeds the method up. The algorithm for the

problem is then:

 Loop over angular frequency 

 Loop over vertical-wavenumber kz

 Calculate matrix A [equation 4.45] for this (kz,).

 Calculate source vectors d and y [section 4.4] for
this (kz,).

 Invert matrix equation 4.45 - this is the matrix
equation for boundary conditions at the conduit
wall - to yield vector x of coefficients.

 Calculate us(kz,) at rs=radial distance of
seismometer from source using 4-37 and 4-38.
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 Multiply by exp(-ikzz) kz/2 and add to us(z,) -
[equation 4-57].

 End loop

 End loop

 Use FFT to derive us(z,t) from us(z,) - [equation 4-57].

The codes were written in Fortran 77 on a Unix workstation.

4.4 Sources

4.4.1 Source vectors

Sources are described through vectors d and y in equation 4-45:
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(4-45)

The coefficient  Af describes point sources at the origin in the fluid. A point source

can be used to represent a pressure change within a spherical region in the fluid;

e.g  the  growth  of  a  bubble,  explosive  degassing  in  section  of  the  conduit,  or

pressurisation of a spherical magma body.

Perturbations  P and   can be used to describe moving sources and extended

sources. These variables are used to model magma rising in the conduit and the

pressure changes due to bubbles rising in the conduit.
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In  the  following  sections,  first  point  sources,  and  then  extended  sources,  are

examined in more detail. 

4.4.2 Point sources

Consider:

  








   ddkerlIBrlKAtzr z
tzki

pffpfff
z )(

00 )()(),,( (4-58)

which is the displacement potential for P waves in the fluid. It consists of two parts,

the first of which describes the source potential - this is the term containing K0 since

that becomes singular at r=0 and therefore represents a source:

 
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
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   ddkerlKAtzr z
tzki

pffsource
z )(

0 )(),,( (4-59)

If Af is independent of kz and , then 4-59 is just a sum over plane waves travelling

in different directions at different speeds. The interference of these waves leads to

spherical wavefronts, i.e. representing a point source.

If  Af is  a  function  of  frequency,  but  not  of  kz,  then  4-59 still  represents  a point

source, but with a time variation given by:

a t A e df
i t( ) ( ) 





   (4-60)

Physically  Af is related to the volume change,  V, in the source region. Following

the definition of the Fourier transforms established in this thesis, Af is just:

A
V

f ( )
( )





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
2

. (4-61)

In practice, the way to use this type of source is to choose V(t), and then calculate

Af() using:
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This is then substituted into the matrix equation 4-45. However, because there is no

anisotropy  or  attenuation  in the  model,  the seismograms produced,  u(t),  will  be

proportional to the volume change,  V(t) - i.e. the ground motion observed at any

station will have the same waveform as the source signature (for P and S wave

propagation  times  which  are  small  compared  to  the  period  of  the waves  being

considered).  Since  there  is  nothing  to  be  learned  by  using  complicated  source

functions, only delta pulses and step functions will be considered.

In order for the source region to expand by an amount  V, work must be done by

some force. This force is provided by a rise in pressure, P, acting over the surface

area of the source region [Fig. 4.2]. A fundamental expression relating V and P

is:

0V

V
P s


  . (4-63)

where s is the incompressibility of the solid. Note that it is the incompressibility of

the solid, not the fluid, that matters here, since the pressure forces in the fluid must

compress the solid. This allows us to compare the likelihood of point sources and

extended sources based on the pressure changes required to produce a particular

observation. 
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A point source can be used to describe a process known as explosive degassing.

This can occur during from the ascent  of magma. The magma contains volatiles

which are dissolved at  great  depth,  principally carbon dioxide and water.  As the

mixture ascends,  the pressure diminishes as does the solubility in the magma of

these  volatiles.  When  the  solubility  becomes  less  than  the  concentration  of

volatiles,  magma and gas separate  to form two distinct  phases.  If  magma rises

more  quickly  than  phases  can  separate,  the  difference  between  solubility  and

concentration increases, resulting in explosive degassing.

4.4.3 Moving point sources

In order to model a moving point source (which will be used later to model a rising

bubble/slug flow), point source models can be calculated at different depths. These

can then be staggered uniformly in time to represent a source which moves with a

constant velocity, or by using shorter and shorter intervals of time, a source which

accelerates as it nears the surface can be simulated. 

4.4.4 Extended sources

The long  period  signals  observed  prior  to  eruptions  at  Stromboli  [Neuberg  and

Luckett, 1996] and Aso [Kaneshima et al., 1996] may indicate:

1. injection of magma into the base of a magma chamber,

2. magma rising through a conduit to the surface, or

3. the pressurization of a conduit section. 
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Figure 4.2: In order for a spherical magma body to increase its radius by

ur(r0) (the radial displacement at the interface between magma and rock),

some force must do work to compress the surrounding solid. This force is

provided by a pressure change P acting over the surface of the sphere.



It  is  not  clear  that  any  point  source  models  could  be  used  to  represent  such

sources. Extended sources will be described by the changes in pressure,  P, and

shear stress, , they produce at the conduit wall.

Four mechanisms are considered for producing pressure changes in these source

models: 

1. Advective overpressure,  which  is the result  of  bubbles rising  within  a sealed

conduit  [Sahagian  and  Proussevitch,  1992].  This  mechanism  requires  the

conduit  to  be  sealed  and  the  walls  to  be  rigid.  In  this  thesis,  advective

overpressure  is considered as a mechanism for increasing the pressure in a

static  magma  column,  leading  to  fracture  of  a  cap  rock.  The  rapid

decompression of the magma may cause explosive degassing and expansion

of the mix, observable as a gas-driven eruption. 

2. The pressure gradient that comes from the weight of overlying magma within

the conduit.  As magma rises (or  falls) in a conduit  the height  of  the magma

column changes which leads to pressure changes along the entire conduit wall.

For a basaltic magma, the pressure gradient deviates very little from lithostatic.

3. The overpressure  arises  because the magma/gas  mixture  rises  more quickly

than  it  can  expand.  Even  if  the  overpressure  remains  constant,  pressure

changes  will  occur  along  the  conduit  wall  as  rising  magma  displaces  lower

pressure gas above it. 

4. The  dynamic  pressure  of  a  moving  fluid  which  is  described  by  Bernoulli’s

equation; this is equivalent to an underpressure [Section 4.4.9] and so it can be

modelled in the same way as an overpressure.

In the source models that follow, advective overpressure for a static magma column

(with rising bubbles)  is first  considered.  Then a rising (moving) magma source is

studied; this has a constant pressure gradient, a dynamic pressure, and an optional

overpressure [Fig. 4.3]. For a rising magma shear stress must also be considered.

In order  to  model  a particular  source,  expressions  for  P(z,t) and  (z,t) at  the

conduit wall must be deduced, and then transformed into the (kz,)-domain. In the

following sections expressions for several  volcanic  sources  are derived.  In all  of

these models, a cylindrical, vertically oriented conduit is assumed.
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4.4.5 Advective overpressure

The simplest kind of extended source is a line source. In a volcanic context such a

source can represent the pressurization of a sealed section of conduit in response

to rising bubbles. In the model of Sahagian and Proussevitch [1992], a bubble rising

a height z in the conduit raises the overall pressure throughout the conduit by gz,

where   is  fluid  density  and  g is  the  acceleration  due  to  gravity.  Their  model

10

0

dgradoverf PPPPP  0

(b) Rising magma

v

P
f

Figure 4.3:  Mechanisms for causing pressure changes along the conduit walls (a) 

Advective overpressure is the mechanism whereby rising bubbles lead to increased 

pressure throughout the magma column. This mechanism requires that the conduit 

is sealed and that bubbles are not reabsorbed by the magma as pressure 

increases.  (b) For rising magma there are four components to the pressure field: P
0

is atmospheric pressure, P
over

 is overpressure in the fluid (assumed constant with 

depth), P
grad

(z) is the pressure gradient, which must exist in order for the magma to 

rise, and P
d
 is the dynamic pressure which is described by the Bernoulli equation.

(a) Advective overpressure

cap 
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assumed that the conduit was sealed and rigid,  and that  no re-absorption of the

bubble would occur as the pressure increased. These assumptions are not realistic

for a volcano, but such a mechanism may increase the pressure in the conduit, with

somewhat reduced efficiency, though experimental data are needed to verify this.

In this model the pressure increases until it exceeds the yield strength of the cap

rock sealing the conduit,  resulting in rapid expansion of the bubbles which have

accumulated  beneath  this  cap.  A  choked-flow  regime  would  probably  occur

because of the relatively small vent size, and the decompression would occur over

several  passages  of  a  rarefaction  wave  down  and  up  the  conduit  [Kieffer  and

Sturtevant, 1984].

Bubbles are assumed to rise at a constant rate, and so the pressure in the system

also changes at a steady rate (dP/dt is constant). At time tmax the cap fails and the

pressure in the conduit instantaneously drops to zero. Since there is no movement

of magma in this model, there is no shear stress.

The first task is to write down an expression for P(z,t). The total pressure change

for times between t=0 and t=tmax is the product of t with dP/dt. This only applies to

points for which  0<z<l i.e. the region inside the conduit  (z=0 corresponds to the

base  of  the conduit,  l is conduit  length).  The limits  on t and  z are  represented

mathematically  by Boxcar  functions  (Appendix  E),  and so  P(z,t) can be written

thus

lt zBttB
dt

dP
tzP 00 )()(),( max . (4-64)

This is transformed into the (kz,)-domain by using E-9 and E-12:
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(4-65)

A constant rate of change of pressure is assumed because nothing can be learned

from forcing  dP/dt to  match the waveform observed  in a  particular  seismogram,

since the variation in pressure could not itself be accounted for. 
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4.4.6 Rising magma as a seismic source

As viscous magma rises up the vertical conduit, the spatial distribution of pressure

and shear stress on the conduit wall changes with time [Fig. 3.10]. Pressure exerts

a force normal  to the conduit  wall,  shear stress exerts a force which is directed

vertically downwards. There is always a pressure gradient in any magma column,

arising from the weight of overlying magma (and rock if the conduit is sealed). A

rising  magma  will  also  experience  a  dynamic  pressure,  given  by  the  Bernoulli

equation. Finally it may have an overpressure, because it has risen too quickly to

stabilize  with  the  lithostatic  pressure  gradient.  In  the  following  sections  each  of

these components is explored separately. Superposition can then be used to model

any rising magma source. 

These various sources of pressure change can be summarised as:

dynamicreoverpressuatmospherefluid PPzhgPzP  )()(  (4-66)

It expresses the difference between fluid pressure and atmospheric pressure at a

height, z, above sea level, where h is the height of the top of the fluid column above

sea level.

In all these rising magma source models, the conduit is initially empty. Magma then

begins to fill the conduit at a constant speed v. When the conduit is full, the magma

rise ceases instantaneously. The manner in which the flow starts and stops is not

important; it is the size and shape of the seismic signals that result from the steady

rise of the magma in the conduit that are of interest.

4.4.7 Rising magma with a pressure gradient

In this type of source, the pressure is changing by the same amount throughout a

section  of  conduit,  representing  a  line  source.  However,  from one  time  step  to

another,  the  section  of  conduit  over  which  the  pressure  change  is  occurring  is

increasing in length, so this as an expanding line source.

At the base of the conduit (z=0), the pressure rises by an amount gv in 1 second,

as  the  weight  of  overlying  magma  increases.  At  some  other  height,  z,  in  the

conduit,  the pressure remains unchanged until after a time  z/v, which is the time

required  for  magma  to  reach  that  level  within  the  conduit.  After  this  time,  the
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pressure  will  again  begin  to  rise  by  amount  gv every  second.  This  can  be

expressed by:

lzB
v

z
tHzvtgtzP 0)()()(),(   (4-67)

using the notation developed in Appendix E. Notice the Heaviside function ‘turns

on’ the pressure change at height z after time z/v. The Boxcar function ensures that

this only occurs for points within the conduit (between z=0 and z=l).

Using E-6, E-9, E-12, E-13 and E-14 this becomes:
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where K k
vz 


.

4.4.8 Rising overpressurised magma

Very  viscous  magmas  are  often  very highly  overpressurised,  and this  can  have

explosive consequences. It would be useful therefore if volcano-seismologists could

tell when overpressurised magma was nearing the surface,  based on its seismic

signature.

In this model the magma pressure is constant,  i.e. there is no pressure gradient.

Pressure is only changing at the point where magma is displacing the gases above

it, but this point moves as the magma rises. Hence this is an example of a moving

point source.

This  is  just  another  contribution  to  the  overall  pressure  profile,  since any  rising

magma  must  have  a  pressure  gradient.  However,  in  some  cases  the  pressure

gradient may have a small effect in comparison to the overpressure (particularly if

the stations are close to the conduit2).

2 The distance between a station and a moving point source changes more if that station is closer to the
axis of the source. Stations which are close to the source are therefore very useful for distinguishing
between moving point sources and other types of sources.  
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P(z,t) is similar to 4-67, except here the magma pressure,  P0 is constant,  which

makes this a simpler case:

lzB
v

z
tHPtzP 00 )()(),(  (4-69)

Using E-6, E-12 and E-13 this becomes:
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 (4-70)

where K has the same meaning as before.

4.4.9 Dynamic pressure of a rising magma

According  to  the  Bernoulli  equation,  a  moving  fluid  (in  steady  irrotational,

incompressible, invisicid flow) has a dynamic pressure given by:

P vd  
1

2
2 (4-71)

This is derived from conservation of energy along a streamline. However, assuming

that  this  holds  in  this  model,  which  may  approximately  be  true,  then  the

consequence is that points along the conduit wall suffer a pressure drop described

by Pd as they are ‘overtaken’ by the rising magma. For large v, this pressure drop

may become a significant  seismic source.  However,  one must bear in mind that

magma rise  velocities  are very  small  (<1 m/s)  except  within  a  few hundreds  of

metres from the surface, where they may increase substantially, driven by the sharp

reduction  in  friction  that  accompanies  fragmentation.  However,  as  magma  rise

speed increases, density drops. Mass flux,  Q, is assumed to be equal throughout

the conduit. Mass flux is given by:

vrQ c
2 (4-72)

Combining this with 4-71 to eliminate v yields:

2

422

1
Q

r
P

c

d 
 (4-73)
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So  the  Bernoulli  effect  increases  as  the  conduit  radius  reduces  (because  flow

speed must increase to keep mass flux constant). Since the conduit radius is likely

to increase with depth, the Bernoulli effect is only likely to be significant at shallow

depths, if at all. However, there may be constrictions at some other points along the

conduit,  which act as seismic point sources, because the flow speeds up a great

deal there. (Such constrictions are unlikely at such a steady volcano as Stromboli,

but  there  may  perhaps  be  such  a  constriction  at  the  point  where  conduit  and

magma chamber meet).

Since this is a pressure drop which acts only at points as they are overtaken by the

rising magma, this is again a moving point source. It can be modelled in exactly the

same way  as  the  overpressure  source,  simply  substituting  Pd for  P0 (this  is no

longer true if changes in density or speed of the flow are allowed):

K

eP
kP
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z




1
),(


 (4-74)

4.4.10 Shear stress for a rising magma

Changes in shear stress caused by rising magma can generate SV waves. Once

the flow is  initiated,  magma rises  at  a  constant  speed  v  (in this  model).  Shear

stress, , only changes at points along the conduit wall as the magma rises above

that level. This is another example of a moving point source. Theisse [1996] derived

a relation  for shear  stress of a Newtonian fluid,  ,  in terms of radial  distance,  r,

average flow velocity, v, and coefficient of viscosity, :




( )r
v

r
 

4
(4-75)

If the fluid is at rest, only pressure forces need to be considered. Shear stresses will

dominate for viscous, fast rising magmas.

Shear stress is only non-zero between onset  of flow,  t=0, and cessation of flow,

t=l/v, since it is proportional v. Hence using the notation of Appendix E, changes in

shear stress are given by: 
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Using E-7 and E-12 this becomes:
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This completes the derivation of sources related to magma rise.

4.4.11 Modelling a rising gas

Above the level  at  which  magma fragments,  lava  clots  are entrained  by rapidly

rising and expanding gas.  Rising gas can be modelled in just  the same way as

rising  magma,  i.e.  as  a  combination  of  overpressure  and  dynamic  pressure

components (but without a pressure gradient, owing to its low density, and without

a shear stress component because it is practically inviscid). This model does not

consider the decompression of gas.

4.4.12 Modelling the rupture of a cap rock

If  the pressure in a sealed section  of  conduit  continues to rise (perhaps  due to

advective overpressure) the seal, or cap rock, may eventually break. Pressure is

then released in a series of steps, which decay exponentially in time, because the

pressure drop is proportional to excess pressure divided by ambient pressure. Each

step corresponds to the passage of a rarefaction wave which travels from the upper

end of the conduit, to its base and back, expanding the fluid (and causing bubble

growth) in its wake.  Gas expires periodically through the rupture at first (choked

flow)  becoming  more  continuous  as  the  excess  pressure  drops  [Kieffer  and

Sturtevant, 1984]. Decompression would lead to a decreasing P wave speed in the

fluid, so each step would take longer than the last.  Therefore this type of signal

would probably look like a sweep signal with exponentially decaying envelope and

a frequency changing from high to low.

Since the pressure ahead of a rarefaction wave is always higher than that behind it,

this  mechanism can  be modelled  by  a  modification  of  the  overpressure  source

(which also involved two different regions of pressure). 
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4.5 Tests of the model

4.5.1 P and S phases

Two sets  of vertical  component  synthetic  seismograms (computed using the  k-

modelling technique) are compared to see if P and S phases could be identified.

For both sets, a point source is activated at time 0 s with a step function source

signature. P wave velocity is set at 1000 m/s and S wave velocity at 577 m/s, with

stations at distances of 1 km, 4 km and 16 km. 

Fig. 4.4a is the case where there is no impedance contrast between the fluid and

the solid. In other words, there is no conduit, the point source is embedded directly

into the rock. Inflexions corresponding to P wave onsets are clearly visible arriving

at the stations at 1 s, 4 s and 16 s respectively, as expected from the combination

of station distances and P wave speed.  S waves are not  observed because the

source produces only P waves (Af non-zero, Cf=0).

Fig.  4.4b  is  the  normal  case  where  there  is  a  significant  impedance  contrast

between fluid and solid. In this case SV wave onsets are clearly visible at 1.7 s, 6.9

s, and 27.7 s, marked by a second inflexion.  These SV waves are produced by

mode  conversions  at  the  conduit  wall.  The  P  and  S  wave  onsets  are  clearly

10
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distinguishable,  despite  the  fact  that  P  and  S  waves  overlap  in  time3.

3 P and S waves will overlap for all distances less than   111  T where T is the period

of the signal, and  and  are the P and S wave velocities respectively.
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There is a signal (marked on Fig. 4.4a as the ‘acausal phase’) prior to the P wave

arrivals.  This  is  physically  meaningless  because  in  a  homogeneous  medium,

nothing  travels  faster  than  a  direct  P  wave,  so  it  must  be  an  artefact  of  the

modelling method, perhaps because a limited range of frequencies (0.015 – 2 Hz)

were used to represent an impulsive source. Any similarity of these waveforms to

the VLP signals at Stromboli  is purely coincidental. Some further investigation of

this acausal phase is warranted.

4.5.2 Relation between displacement and source volume

The simple modelling performed in Chapter 3 showed that displacement in the near

field  is  proportional  to  source  volume  for  both  point  sources  and  line sources.

These  conclusions  are  supported  by  the  more  accurate  k- modelling.  Fig.  4.5

shows the maximum displacements produced by point sources of various volumes;

both graphs are of the form y=mx, indicating displacement and source volume are

proportional.  An expression for the displacement  from a point  source in terms of

pressure change and initial source volume is:

0PVku (4-78)

where k is some constant. This is derived by combining 4-62 and 4-63.
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Figure 4.4:  A point source (of P waves only) at  r=0,  z=0 in a narrow conduit is

activated at t=0 s. The conduit is enclosed in a solid with a P wave speed of 1000

m/s  and an S wave speed  of  577 m/s.  Synthetic  seismograms  are shown for

stations at r=1000, z=0 (blue curve), r=4000, z=0 (green curve) and r=16000, z=0

(red curve), for two different models: (a) There is no impedance contrast  at the

conduit wall, so no conversion to SV waves occurs. The P wave arrivals, marked

by  an  inflexion,  are  observed  at  the  expected  times  –  1  s,  4  s  and  16  s

respectively.  Prior  to  the  P  wave  there  is  acausal  energy  which  must  be  an

artefact  of  the  modelling  scheme.  (b)  With  a  large  impedance  contrast  at  the

conduit  wall,  partial  conversion  of  P waves  to  SV waves  does  occur.  This  is

confirmed by a decrease in the amplitude of the P phase, and a second inflexion

marking the arrival of the SV phase at 1.7 s, 6.9 s and 27.7 s respectively.



Fig. 4.6 shows the maximum displacements produced by line sources of various

cross-sectional areas; again these are exactly proportional. Hence, 4-78 also holds

true for a line source.

For a rising magma source which has only a shearing component, we again expect

displacement to be proportional to source volume and shear stress, ,  (which takes

the place of pressure), leading to an expression of the form:

u  k r 2 (4-79)

11

1



Figure 4.5
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Figure 4.6
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Using 4-74 this becomes:

u  k vr (4-80)

However,  the results of  k- modelling show that displacement and conduit radius

are independent [Fig. 4.7] for a source involving only shear stress.

4.5.3 Decay laws

To  check  whether  the  k- modelling  method  approximates  near  field  terms

adequately the decay laws from a point source [Fig. 4.8] and a line source [Fig. 4.9]

were modelled. This was done for seismometers in the range of 0-5 km since most

volcano-seismic stations are deployed within 5 km of the summit.

For a point  source,  Fig. 4.8 shows that the near field term dominates for  r<0.6,

where   is the maximum wavelength present  in the source.  In the near field the

decay  law approaches  1/r2.  In  Chapter  3  it  was  shown that  the  near  field  term

dominated for  r<. The discrepancy is possibly explained because the modelling

here assumed a range of wavelengths, whereas the simple modelling assumed a

monochromatic source.

The decay laws for a finite line source are more complicated [Fig. 4.9], because two

different  effects must be considered. First  the finite line source begins to behave

more like a point source for r>L/2, which corresponds to the distance at which the

source subtends an angle of 80o at the station. Secondly the far field term begins to

dominate  for r  >  0.5.   In  Chapter  3  it  was  concluded  that  the  near  field  term

dominated  for  r<;  again the discrepancy can be explained because a range of

wavelengths  is used in this chapter,  as opposed  to the single frequency  source

used in Fig. 3.5. Decay laws for finite line sources always behave like 1/r for very

near and very far sources, but for intermediate distances any behaviour is possible

from 1/r2 to almost no decay at all. 

The short-period  wavefield at  Stromboli  corresponds  to wavelengths  of  ~ 350 –

1700 m whereas the VLP wavefield wavelengths of 5 - 50 km. Figs. 4.8 and 4.9

suggest therefore that VLP phases can be observed to a much greater range. VLP

signals  from Aso volcano  have been recorded  up to distance  of  a few hundred

kilometres [Kawakatsu et al., 1994]. 
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Figure 4.7
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Figure 4.8
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FIGURE 4.9

Decay law for line source.
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4.5.4 Depression  of  the  volcanic  summit  in  response  to

rising magma

What happens at a station close to the conduit when rising magma ‘overtakes’ it? A

conduit of length l=1000 m with stations at r=10, 100 and 1000 m, z=500 m, and a

magma rise velocity of 1 m/s was used [Fig. 4.10]. If the  kz- modelling method

works,  some dramatic effects should be seen around 500 s (the amount  of time

required for magma to reach the level of  the station in this example).  Fig. 4.11a

shows that the station moves radially outwards very rapidly as the magma reaches

a level of ~500 m. Fig. 4.11b is more interesting - it shows that the station moves

vertically  downwards as  magma  rises  up  the  conduit;  this  occurs  because  the

summit of the volcano loses support as material below is pushed radially outwards

by the  pressurised  rising  magma.  This  is  important  because  it  predicts  magma

rising at depth leads to a depression of the volcanic summit. Note, however,  that

P acts only to the sides (conduit walls). The particle motion is shown in Fig. 4.12.
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Figure 4.10: (a) The conduit is empty at time t=0 s and at atmospheric pressure (Pa).

Rising magma with pressure (Pf) starts to fill the conduit at a speed of 1 m/s, causing

variations  in the  displacement  of  the  seismometer.  The strongest  effects  are  felt

around 500 s, when the moving source makes its closest approach to the conduit.
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Figure 4.11:  Overpressurised magma (a moving point source) rises up a conduit of length
1000 m at  1 m/s. Seismograms are shown for stations half-way up the conduit,  at  radial
distances, r, of 10, 100 and 1000 m respectively (magnifications are also shown). (a) Radial
displacements show that stations nearer the conduit have a more implusive reaction, since
they  experience  the  source  as  a  more  local  effect.  (b)  Vertical  displacements  show
behaviour as radial  distance increases. For stations near the conduit,  the initial  motion is
downwards,  even though the source is a pressure increase.  This motion  becomes  more
exaggerated  as  the  source  approaches.  After  nearest  approach,  the  vertical  motion
reverses. For stations far from the conduit, the motion is upwards prior to nearest approach,
and  then  downwards.  For  stations  at  intermediate  distances  the  vertical  motion  is  more
complicated.



However, such an observation could easily be interpreted as a depressurisation of

a spherical magma body (using the Mogi model), thus leading to an entirely wrong

assessment of volcanic hazard.

When the rising magma gets close  to the station,  the station  is pushed  radially

outwards and upwards, recovering some of its lost height. When the magma level

finally  overtakes  the  station,  the  station  is  pushed  radially  outwards  and

downwards. Finally, as the rising magma moves material above the station radially

outward,  the  weight  of  overlying  material  is  reduced,  and  the  station  moves

upwards  again,  recovering  nearly  all  of  its  lost  height  (not  all,  because  the end

result is that the pressure along the entire conduit has increased).

12
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Figure 4.12: Particle motion at different radial distances from the conduit. This

demonstrates that for stations very close to the conduit (~100 m), subsidence

may  be  observed  in  response  to  rising  magma,  but  this  could  easily  be

interpreted as deflation  of the volcano.  At  greater  distances particle motions

reveal that the volcano is in fact inflating. See figure 4.11 for more details.



4.5.5 Superposition of sources

The effects of pressure and shear stress are independent [Fig. 4.13]. This is useful

as it means that for a particular model, the effects of a certain pressure, and the

effects  of a certain  shear  stress can be investigated independently.  Furthermore

this  allows  the  seismograms  for  any  linear  combination  of  pressure  and  shear

stress  to  be computed  simply  by linear  combination  of  the seismograms.  In the

case  of  rising  magma  it  is  also  valid  to  form  linear  combinations  of  different

pressure  terms  such as  overpressure,  pressure  gradient  and  dynamic  pressure.

This important result suggests that the best way to study rising magma is to study

the effects of each pressure term and the shear stress term independently. 

4.5.6 Source reconstruction

The source representations that are fed into the method (e.g. equations 4-64, 4-67

and 4-69) can be reconstructed using the discrete wavenumber method,  which is

the same method  used to  calculate  synthetic  seismograms.  If  the reconstructed

source matches the source representation that was used, it means that the Fourier

transforms  used  in  Appendix  E  are  correct,  and  that  the  discrete  wavenumber

method  works.  This  increases  our  confidence  in  the  computed  synthetic

seismograms.  For  example,  consider  the  representation  for  an  overpressurised

rising magma source:
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Which after a double Fourier transform to the kz- domain becomes:
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Figure 4.13
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This is the formula which is coded. Now in the same way that  seismograms are

calculated,  the  pressure  time  series  can  be  calculated  from  the  modelling

technique. The pressure time series (at several depths) obtained as an output from

the  modelling  technique  should  be  consistent  with  the  source  that  was  being

modelled, in this case an overpressurised rising magma. 

The method for calculating the integral:
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is to approximate it by:
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where the inner summation is the discrete wavenumber method. The pressure time

series can be reconstructed in the same way:
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This was included in the code. The model used was a 1000 m long conduit, with

magma rising at 1 m/s, with an overpressure of 1 MPa. The pressure time series at

heights of 500 m and 700 m above the base of the conduit were calculated [Fig.

4.14]. The results show that for z=500 m, the pressure increases by 1 MPa after

500 s. This is expected because at time the magma would have risen to 500 m

above the base of the conduit. The same pressure rise occurs after 700 s at z=700

m,  demonstrating  that  the  source  representation  for  an  overpressurised  rising

magma,  and  the  method  for  calculating  seismograms  are  both  sound.  Further

checking revealed that the source representations for a line source, a rising magma

with a pressure gradient and with shear forces also give the expected results.      
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FIGURE 4.14

Source step functions.
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4.6 Conclusions

In this Chapter,  a method for calculating synthetic seismograms/deformation  has

been derived for three types of sources within a cylindrical conduit:

1) point sources,

2) pressurisation of a conduit section (line source),

3) magma rise, which has four components which can be superposed:

a) pressure gradient (expanding line source),

b) overpressure (moving point source),

c) dynamic pressure (moving point source),

d) shear stress (moving point source).

In  addition,  a rising  bubble has  been  synthesised  by  staggering  in time several

point sources acting at different positions, and models for a rupture source and a

rising gas (modifications to the rising magma model) were discussed.  Testing of

modelling method revealed that:

(i) P and S waves are correctly delayed.

(ii) The  method  used  for  feeding  different  sources  into  the  modelling  technique

works,  because  the  pressure  source  function  (and  the  shear  stress  source

function) recovered was as expected in all cases. 

(iii) Decay laws show that near field effects are included in models.

(iv) Increasing  the impedance  contrast  between  fluid and  solid  leads  to  reduced

amplitude of seismic waves in the solid i.e. coupling is reduced as expected.

(v) Solutions  can  be  linearly  combined  as  the  effects  of  the  different  source

components  are  independent  (because  stress  is  assumed  proportional  to

strain),

(vi) Dramatic effects are seen at stations close to the conduit as magma rises past

them.  Surprisingly,  these  stations  move  downwards  before  magma  reaches
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them,  which  is  explained  by  the  rock  below  them  being  pushed  radially

outwards.

In Chapter 5 the techniques derived in this chapter will be applied to Stromboli.
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