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Abstract

Seismic energy radiation at Soufrière Hills volcano, Montserrat, is made up by various types of transient signals, which are

distinguished by the Montserrat Volcano Observatory (MVO) in different classes with respect to their characteristics and/or origin.

There are five fundamental classes, i.e., Volcano-Tectonic Events, Regional Events, Long-Period Events, Hybrid Events, and

Rockfalls. Identification and classification of these transients, which have been hitherto carried out manually by various staff

members, yield important information for the assessment of the state of the volcano system. In the frame of the MULTIMO project,

we proposed the application of Artificial Neural Networks (ANN) for the classification of these kind of data in order to handle large

data sets, and to achieve reproducible results, emulating the expert’s analysis. Using the manual routine classification as a-priori

information, we obtained a fair performance of such an automatic processing, with 70% of the automatic classifications being

consistent with the original ones. From an analysis of the misclassified events, however, we found that for most of them the original

a-priori classification was incorrect.

In this study, we first revised manually the original a-priori classification. Based on a data set of 6000 events, we carried out a

reanalysis of the seismic traces recorded at different seismic stations. Then, using this new information, we trained and tested the

ANN, obtaining a successful classification in ca. 80% of records. Particularly, the automatic classification was excellent in the

identification of Rockfalls and Volcano-Tectonic Events. Among the misfits, we observe the erroneous attribution of Long-Period

and Hybrid Events to Rockfalls. This may be partly explained by the fact that signals addressed to as Rockfalls contain frequently

contributions of various sources. Overall, the failure in the classification between some types of transients highlights the problem of

the concurrent activation and/or unclear separation of distinctive sources from which the signals stem. We conclude that the

automatic classification with ANN is a powerful tool for handling large data masses as well as for the a-posterior analysis of the

consistency of the classification problem.
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1. Introduction

At the beginning of the 20th century, volcanism in

the Caribbean was famous for two spectacular and

devastating eruptions at the Soufrière of St. Vincent
mal Research 153 (2006) 1–10
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and Mt. Pelée, Martinique, where in particular the

phenomenon of nuées ardentes was reported for the

first time. In 1995, the focus of scientific interest turned

again to the Caribbean, where after 400 years of relative

quiescence the Soufrière Hills volcano (Fig. 1) on

Montserrat resumed its activity. Since then Montserrat

has provided a large volume of data, boosting the study

of volcanic processes in the framework of research

projects such as MULTIMO, which has been financed

by the EU.

Montserrat (Fig. 2) is located in the northern part of

the Lesser Antilles. The island is made up by four

volcanic centres whose age ranges from 2.5 Ma to the

present. Among these the Soufrière Hills volcano is the

youngest, its activity being started at least 170 ka ago

(Sparks and Young, 2002). The volcano complex has

been monitored regularly since 1992, when enhanced

seismic activity was locally recorded. Immediately after

the phreatic explosions on July 18, 1995, an operational

centre was established in the island. This centre acted as

a seed for the Montserrat Volcano Observatory (MVO),

which has been provided with a sizable scientific staff

to conduct round the clock monitoring of volcano

activity (Aspinall et al., 2002). The monitoring at Sou-

frière Hills volcano encompasses visual observations,

ground deformations, seismic radiation, and geochem-

ical analyses. Continuous seismic monitoring has prov-

en to be the key technique. On active volcanoes, a wide

variety and amount of seismic signals may occur. The

problem of handling the huge data masses accumulat-

ing during continuous monitoring was recently

addressed in a paper by Langer and Falsaperla
Fig. 1. Snapshot of the Soufrière Hills volcano (
(2003), where specific aspects concerning both persis-

tent signals – the so-called volcanic tremor – and

transients were discussed. The authors highlighted the

need and benefits of data reduction and parameter

extraction. On volcanoes like Soufrière Hills with its

andesitic and SiO2-rich magma, seismic radiation is

characterized by transient signals. Although tremor epi-

sodes do occur, they are often due to the superposition

of repeated Hybrid or Long-Period Events (Baptie et

al., 2002) and are not continuous background tremor,

such as that observed on open-conduit volcanoes like

Mt. Etna or Stromboli (Falsaperla et al., 1998; Schick

and Riuscetti, 1973). There are typical signal classes

with distinctive waveform, frequency content, and du-

ration. Therefore, the goal of data compression can be

achieved by event classification. In a general scheme,

transient seismic signals on volcanoes are categorised

as (see McNutt, 2000): (i) High Frequency Events, with

clear P- and S-phases and dominant frequencies greater

than 5 Hz, (ii) Long-Period Events, with no clear onset

and dominant frequencies between 1 and 5 Hz, (iii)

Hybrid Events, with sharp onset and coda similar to

Long-Period Events, (iv) Explosion Quakes, accompa-

nying eruptive activity, and often accompanied by air

waves, (v) Very Long-Period Events, with dominant

periods between 3 and 20 s, and (vi) Superficial Events,

such as landslides and rockfalls. The MVO staff mod-

ified this scheme in order to match the specific situation

on Montserrat. The relationships between the various

event types and volcanic activity have been widely

described and investigated in several volcanic areas

(e.g., McNutt, 2000). In the following, we refer to the
taken from east) during a pyroclastic flow.



Fig. 2. Map of the island of Montserrat. Stars mark location of the stations of the digital seismic network. Some stations have been destroyed by

volcanic activity, and relocated.
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scheme adopted by the MVO staff, and identify five

event classes (Fig. 3), i.e., Volcano-Tectonic Events

(hereafter VTE), Regional Events (REG), Long-Period

Events (LPE), Hybrid Events (HYB), and Rockfalls

(ROC). Besides these five types, a further class was

originally distinguished as Long-Period Events+Rock-

falls (LPE+ROC). In this class, the MVO staff identi-

fied a mixed transient consisting of a rockfall shortly

preceded by a low frequency signal.

Volcano-Tectonic Events (VTE) have sharp onsets,

dominant high frequencies, and short durations. They
are commonly due to brittle fracture in response to

stress changes associated with magma dynamics.

According to the MVO’s classification scheme, VTE

originate from within the volcanic edifice, and often

occur before impending eruptions and in post-eruptive

times during stages of magma withdrawal and stress

relaxation.

Regional Events (REG) are tectonic earthquakes

caused by brittle fracture. Unlike VTE, however, they

have longer delays between P- and S-wave arrival

times, and originate outside of the volcanic edifice.



Fig. 3. Waveforms of the six classes of transients considered. Year, month, day, hour, and minute at the onset of each transient are indicated at the

upper right of each trace.
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Long-Period Events (LPE) at Soufrière Hills volcano

have distinct spectral peaks in the frequency range

between 0.2 and 5 Hz. They are interpreted as the result

of a resonance phenomenon of a magma-filled conduit.

Unlike LPE, Hybrid Events (HYB) have an addi-

tional high frequency phase up to 10 Hz, which pre-

cedes the long-period phase. HYB are often recorded in

swarms and sometimes merge to tremor accompanying

explosive activity. Cyclic behaviour of the swarms has

been linked to cyclic tilt behaviour, suggesting that the

two phenomena are interconnected (Baptie et al., 2002).

Neuberg et al. (2000) consider LPE and HYB as two

end-members of a single event class, and claim that a

continuum exists between them.

On Montserrat specific attention has been devoted to

Rockfalls (ROC), as these are related to the growth and

collapse of the lava dome (Calder et al., 2002). Rock-

falls could be as small as a single block bouncing down

the slope of the dome. In extreme cases, however, they

may assume the dimension of pyroclastic flows, which

run over distances of several kilometres. Whenever a
rockfall is observed, a characteristic seismic signal is

recorded at the nearby seismometers. The seismic re-

cord, on the other hand, allows the detection of ongoing

rockfall activity when its visibility is concealed from

meteorological conditions. Although the seismic signals

associated with ROC are usually characterized by dom-

inant frequencies between 2 Hz and 8 Hz, in many

cases significant signal energy is present in the frequen-

cy range below 2 Hz as well (Luckett et al., 2002).

Commonly, hundreds of events are recorded each

week by MVO. A visual inspection by human operators

of all these events, forms a rather arduous task in terms

of time – especially during phases of enhanced activity

– and whose results may be severely affected by the

subjectivity and motivation of the data analyst. We

therefore investigated the application of an automatic

classification tool, known as Artificial Neural Networks

(ANN). We use the ANN in a classification scheme

with a supervisor. In this scheme, the discrimination

function among the various classes is estimated using

the a-priori classification provided by an expert for a
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specific training set of data, and then it is applied to

new, unknown data. The advantage of the ANN over

classical classification techniques has been discussed in

various studies (e.g., Lippmann, 1987; Raiche, 1991).

A principal feature of ANN is that it is possible to solve

classification problems of arbitrary complexity. Once

the discrimination function is established, the classifi-

cation becomes extremely fast and suitable for both real

time applications as well as the processing of very large

data sets piled up in the past.

Supervised learning essentially depends on the qual-

ity of the training data set, which has to be of sufficient

size in order to represent the parent population of the

events recorded on the volcano. There is no general rule

to fix a proper size for the training set. As ANN are

good at generalization, even a small data set can be

sufficient to train a network successfully. A further

request is the consistency of the a-priori information

(here the a-priori classification carried out by the human

operator for the training data set). The request of con-

sistency of the a-priori information, however, is not

easy to match. The staff in a remote observatory like

MVO is subject to change (see Aspinall et al., 2002 for

a thorough discussion of the development of MVO),

and the reproducibility of expert opinions is widely

questioned. Moreover, the staff who routinely catego-

rise events are not trained seismologists. Thus, the

scope of the present study is twofold. One aspect

deals with the technical characteristics of the ANN

application, the other aspect focuses on the re-analysis

of the data used in the training set.

From a first application to a limited data set with 336

records, Langer et al. (2003a) concluded that automatic

classification of seismic transients on Montserrat should

be successful if a training set of sufficient size were

available. In this paper, we analyze a considerably

larger data set, consisting of several thousands of traces.

These signals had been routinely classified by various

members of the MVO staff. The original classification

was used in a first step as-priori information for the

application of the ANN.

2. Data set

The data set we analyze here covers a time span

from 1996 to 1999. The seismic signals were

recorded at 9 digital stations belonging to the perma-

nent seismic network run by MVO (Fig. 2). The

stations were equipped with Guralp CMG-40T 3C

broadband sensors, having a bandwidth between

0.03 and 30 Hz, and dynamic range of 144 dB.

Additionally, Integra LA-100, vertical component, 1
Hz seismometers were also used. The sampling rate

was 75 Hz. Signals from each station were transmit-

ted to MVO, where they were recorded on a PC-

based digital acquisition system.

For our application, we used up to 6000 seismic

records, considering the vertical component only.

These records were originally divided into the six clas-

ses aforementioned by MVO staff. The time series have

durations from ca. 1 min to several minutes. Following

Langer et al. (2003a), we chose to use the time series

recorded at the different stations for each single tran-

sient as separate examples, i.e., the classification is

carried out considering each single channel. By classi-

fying each trace on its own, we avoid complex reason-

ing about how to weigh the significance of the various

stations. In fact, these weighting schemes might be-

come quickly obsolete, as a seismic network on active

volcanoes often undergoes technical changes, and es-

pecially during climactic stages, stations considered

very significant may be missing from one day to the

other.

3. Application of the ANN

The architecture of ANN we use for our application

is the so-called Multi-layer Perceptron (Rumelhart et

al., 1986, Fig. 4). This ANN has the advantage to define

discrimination functions of arbitrary complexity in prin-

ciple, and the procedures followed for the estimation of

the discrimination function do not require any a-priori

knowledge about its mathematical structure.

For the set-up of the ANN, we carry out the three

following steps: (i) definition of a suitable form of

data representation, (ii) identification of representative

examples of the patterns (here the signals or their

transforms, respectively) whose class membership is

known, (iii) choice of an ANN topology. We chose a

simple topology consisting of three layers of nodes: an

input layer, where the input data vectors (patterns) are

stored, a hidden layer, where a nonlinear weighting

function is applied and which is necessary to guaran-

tee the generality of the discrimination function, and

the output layer representing the resulting vector of the

ANN application. Particularly, the hidden layer is

formed by the computing units of the network which

work as feature detectors. The terms node and neuron

are synonyms, and indicate the individual computation

elements of the ANN. We consider topologies in the

form U–NH–O, where U and NH are the number of

neurons in the input and hidden layers, respectively,

and O are the classes of patterns to identify. The

output vectors concerning each single pattern contain



Fig. 4. (a) Topology of an ANN, and (b) scheme of the single neuron (modified from Langer and Falsaperla, 2003).
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the class memberships of the signals calculated with

the ANN, which are compared to the target values

defined by the human operator. The target output has

assigned b1Q to the class which the signal belongs to,

and b0Q to the other classes.

Formally the classification is carried out by apply-

ing a mapping function of the input vector U (which

represents our signals) to an output vector Y (here the

class membership values). The mapping function is

given by

ŷyk Uð Þ ¼
XNH
j¼1

cjr wT
j dUþ tj

� �
þ c0

where ŷk is the k-th element of Y estimated by the

network, U is the input vector, wj are the vectors of the

weights between input and hidden layer, cj are the

weights between hidden and output layer, tj are biases,

r(d ) is the sigmoid activation function j(z)=1 /
(1+e� z), c0 is a constant. In simple words, the quantities

wj and cj are weights which express the strength of the

connection between two individual nodes. The sigmoid

activation function regulates the activation of the nodes

according to thresholds fixed by its typical shape, and

consequently determines the output value. An in-depth

discussion of this function can be found in Grossberg

(1982).

A classification is considered successful if the max-

imum of the ŷk is obtained for the same class k for

which the target output was set to b1Q. The ANN

performance improves when the length of the input

data vectors can be limited and phase alignment pro-

blems are avoided (Falsaperla et al., 1996; Langer and

Falsaperla, 2003). Following Langer et al. (2003a), we

find convenient to use an information code which
provides a constant length of all the input data vectors,

regardless of the original signal duration. Particularly,

for the preparation of this information code, we use a

combination of: (i) the autocorrelation function, (ii)

statistical parameters such as the sums of the ampli-

tude signal A, (iii) the amplitude ratio between filtered

and unfiltered traces, (iv) the ratio of the maximum

amplitude of the signal versus the RMS amplitude

measured before and after the maximum. The autocor-

relation functions (acf) represent the spectral content

of the signal. The acf were obtained in the frequency

domain using a window length of 16,384 points for

the Fast Fourier Transform. In each input data vector,

we first provide the acf taking the first n points that

we find sufficient to represent the function. Being

zero-phase functions, acf always have their maximum

at the beginning of the trace. This avoids the problems

of phase alignment which may occur if plain wave-

forms are used (Langer and Falsaperla, 2003). Then,

we consider the amplitude values of the signal A,

followed by the sums over A2, A3, A4. These sums

of the amplitude resemble statistical moments. Finally,

we introduce the amplitude ratio between the bandpass

filtered (between 0.7 and 1.5 Hz) and unfiltered traces,

as well as the ratio between the maximum amplitude

of the signal and the RMS amplitude measured in two

time windows over 5 s before and 30 s after the

maximum, respectively. The statistical moments and

amplitude ratios should help to distinguish brief,

peaked transients (like VTE) from signals with long

duration (like ROC), but having similar frequency

content.

Following the common practise in ANN applica-

tions, we divide our data set into two groups, by

randomly selecting a training set, which was used for



Table 2

Results of the automatic classification using original a-priori

information

T/Ca VTE REG LPE HYB ROC LPE+ROC

Training set

VTE 608 51 11 43 63 0

REG 1 12 2 2 1 1

LPE 5 5 220 50 25 4

HYB 21 10 30 195 26 1

ROC 79 103 141 180 1548 62

LPE+ROC 0 0 0 0 0 0

Test seta

VTE 148 17 1 10 22 0

REG 0 0 0 0 0 1

LPE 2 2 49 13 5 1

HYB 3 4 10 48 3 0

ROC 28 31 40 48 401 13

LPE+ROC 0 0 0 0 0 0

a T/C=Target (column) versus calculated (line).
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the estimation of the ANN coefficients, and a test set.

The application of the ANN to a test set not being used

during the training phase provides information about

how the ANN performs when applied to new, unknown

data. The random selection makes reasonable the as-

sumption that training and test data sets belong to the

same parent population, as requested by theory.

4. Previous tests with original a-priori classification

The years from 1996 to 1999 encompass a time span

in which volcanic activity on Montserrat reached a

climax with devastating eruptions in 1997. For our

analyses, we selected about 6000 records corresponding

to ca. 1000 events, which were representative of the

activity in the years 1996–1999. We continued to use

the a-priori classification assigned by the MVO staff

during routine analyses, with the six classes of signals:

VTE, REG, LPE, HYB, ROC, LPE+ROC. Table 1

highlights the distribution for event classes in the data

set as inferred from the a-priori classification. There is a

high number of ROC and VTE, whereas the number of

events identified a-priori, in particular, as REG and

LPE+ROC is small in comparison to the total number.

During the pre-processing, we removed from our data

set all the events with peak-to-peak amplitude less than

1000 counts, in order to limit the effects of noise. Next,

3500 events were randomly selected, which made up

the training data set for the estimation of the ANN

mapping function. The remaining 900 events were

used as test set for the assessment of the performance

of the ANN when applied to new data. After some trial-

and-error experiments, we chose the topology 103–20–

6, i.e., an input layer consisting of 96 neurons for the

autocorrelation function plus 7 neurons for the other

parameters, a hidden layer of 20 neurons, and an output

layer with 6 neurons corresponding to the number of

classes to recognize. The results obtained with this

topology are provided in Table 2, and highlight a

success rate of about 70% both in the test and training

data set. This percentage is of the same order of the

success rate reported by Langer et al. (2003a). These

authors found that for their 336 signals the results of the

classification for the training set improved augmenting

the complexity of the ANN topology, whilst concur-
Table 1

Composition of the data set with peak-to-peak amplitude greater than

1000 counts

VTE REG LPE HYB ROC LPE+ROC

895 226 504 589 2094 83
rently the mismatch for the test set increased. They

interpreted this effect as a consequence of overfitting,

and concluded that the mismatch rate of 30% for their

data set was partly due to an insufficient number of

records available for the training of the ANN, which

made useless the application of complex topologies.

Conversely, the tests we carried out did not show

overfitting problems even with topologies as large as

300–50–6 (293+7 neurons between acf and the other

selected parameters, 50 neurons for the hidden layer, 6

neurons for output). In a further test, we also excluded

events with peak-to-peak amplitude less than 5000

counts. The remaining data set consisted of ca. 2200

events, 1400 of which were used in the training set

and about 800 in the test set. Nonetheless, no signif-

icant change in the mismatch rate was noticed. Over-

all, the tests we carried out led us to surmise that the

success rate of the ANN applications was bounded for

intrinsic reasons. These reasons might be the somehow

unsuitable representation of the input data (here auto-

correlation functions, statistical parameters, and ampli-

tude ratios, as described above). Another possible

reason might be related with the a-priori information,

and the possibility that it had flaws. Visual inspections

of some misclassified events – for which indeed the a-

priori classification turned out questionable (see Fig.

5) – led us to carry out a careful re-analysis of the a-

priori classification.

5. Reclassification with revised a-priori information

A first, partial revision was carried out by one of the

co-authors of the present paper, Tanya Powell, who was



Fig. 5. Examples of doubtful or erroneous a-priori classifications. For each transient, the class encircled at the upper right indicates the a-priori

classification, the following one is the class assigned by the ANN.

Table 4

Results of the automatic classification using revised a-priori

information

T/Ca VTE REG LPE HYB ROC

Training set
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not involved in the previous analysis, and whose judg-

ment could not be biased by the research hitherto

developed. About 300 of the misclassified traces were

re-classified and compared to both the original classi-

fication and the automatic classification provided by the

ANN. The results shown in Table 3 clearly demonstrat-

ed that the flaws of the a-priori classification could be a

serious problem. Overall, in more than 50% of the

revised events, the classification of the ANN was pre-

ferred to the original one previously assigned by the

human operators.

Moving on from these results, we decided to rean-

alyze ca. 2400 events with peak-to-peak amplitude

greater than 5000 counts, and to reclassify them by

our own, before proceeding with a new application of

the ANN. About 200 events turned out to be not

classifiable, for the signal quality was too poor.

Among the remaining 2200 patterns, 1400 transients

were randomly selected as training set patterns, whereas

800 traces were used to form the test set. Similar to our

former applications of the ANN, we used the autocor-
Table 3

Manual reclassification of 300 apparently misclassified events

T/Ca VTE REG LPE HYB ROC LPE+ROC

VTE 8 15 0 0 9 0

REG 0 3 0 0 2 0

LPE 0 0 15 10 0 3

HYB 9 4 2 50 14 5

ROC 4 5 12 17 102 35

LPE+ROC 0 0 0 0 0 0

a T/C=New Target (column) versus calculated (line).
relation function, the sums over A, A2, A3, and A4, and

the amplitude ratios previously described, as input

parameters. We assumed, however, a slightly simplified

scheme with five classes, including the transients of the

class LPE+ROC within that of the ROC. The automat-

ic classification with ANN matched the target classifi-

cation in about 80% of cases (81% in the training set

and 78% in the test set, see Table 4). Most of the ROC

were classified consistently, and the same holds for the

VTE. Conversely, many HYB and LPE were confused

with ROC, whereas a minor number of misclassifica-

tions was noticed among the two classes themselves.

On the other hand, the identification of the REG mostly

failed.
VTE 182 10 0 3 19

REG 3 21 0 0 5

LPE 2 1 113 23 15

HYB 12 5 17 76 5

ROC 26 26 57 31 748

Test set

VTE 102 6 2 7 9

REG 5 3 0 1 2

LPE 2 1 47 16 8

HYB 3 4 10 31 4

ROC 14 22 40 30 458

a T/C=New Target (column) versus calculated (line).
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6. Discussion and conclusions

Seismic monitoring has become a key tool for the

surveillance of active volcanoes worldwide. The con-

tinuous data acquisition, however, brings along the

problem of accumulating huge data masses – such as

100 MB per day per each single three-component sta-

tion – which are cumbersome to handle. Data compres-

sion and parameter extraction are therefore necessary to

exploit the huge amount of information for forecast and

warning purposes. The method used to achieve this

goal depends on the type of volcanic activity and

related seismic signals. The Soufrière Hills volcano

on Montserrat forms an andesitic complex with highly

viscous magma (Sparks and Young, 2002). Seismic

radiation on volcanoes of this type is characterized by

transient signals, which prevail throughout long time

spans over tremor. In this context, we tackle the task of

data compression and parameter extraction performing

the automatic classification of signals with ANN. Our

applications follow a supervised classification scheme,

in the sense that the target classification of the training

set is defined by an expert. The advantage of the ANN

compared to more traditional techniques is their gener-

ality. In other words, it is possible, in principle, to attain

classification functions of arbitrary complexity, provid-

ed there is a sufficient number of available examples to

achieve a stable estimation of the coefficients of the

classification function. Once this function is obtained,

its application is simple and fast, allowing the proces-

sing of large data sets off-line as well as the automatic

classification on-line of continuously recorded signals.

An important aspect of automatic classification by

ANN is that it is undoubtedly objective, for it is for-

mally reproducible. In addition, its results can be

exploited in a-posteriori analyses to verify the consis-

tency of the a-priori classification. In the first tests

carried out by Langer et al. (2003a), the performance

of the ANN was good enough to be considered encour-

aging. The percentage of misfits, which reached 30%,

compelled the authors to carry out further analyses.

From their experiments with various topologies, the

authors suspected that their data set containing 336

traces was probably insufficient for getting better

results, as overfitting problems were encountered for

large topologies. Moving on from these findings, we

considered a large data set with up to 6000 traces,

corresponding to ca. 1000 events. We carried out var-

ious experiments to choose the best topology and define

a convenient amplitude threshold which excluded noisy

signals with small amplitude. Although overfitting pro-

blems were definitely fixed, the output of the automatic
classification in the following tests diverged from the

desired output in about 30% of the records, both in the

training set and test set (Langer et al., 2003b).

It has been observed (see, e.g., Langer et al., 1996)

that persisting errors in both training and test set might

be an indication for an ill-conditioned problem rather

than an ANN failure. In our specific case, we suspected

that the a-priori classification had flaws. This could be

indeed verified by one of the co-authors of the present

paper, who had not taken part in the analysis until then.

A re-evaluation of 300 apparently misclassified records

revealed that at least 50% of the mismatches were due

to debatable or even erroneous a-priori classification.

As a consequence, we redefined the target classifica-

tions for all the records with peak-to-peak amplitudes

greater than 5000 counts, visualizing them one by one

and assigning a class membership to each of them. With

this new definition, we achieve a success rate of ca.

78% for the ca. 800 examples of the test set, whereas

the score in the training set amount to 81%. ROC and

VTE are recognized with a high success rate (close to

90%). We also note a proper separation between HYB

and LPE, which comes to some degree as a surprise, as

these two types might form two end-members of a

single event class and a continuum has been claimed

between them (Neuberg et al., 2000).

We believe that the remaining 20% of misclassified

traces places an intrinsic limit of our classification

problem. Firstly, similar to the original a-priori classi-

fication, our revised classification may also contain

inconsistencies and errors. We also note an overall

failure in the identification of the REG. This failure is

probably due to the scarce (about 5%) number of

records in the data set. Nevertheless, we cannot exclude

that the coding of the input information (autocorrelation

function, statistical moments, and amplitude ratios) is

not appropriate for this event class. On the other hand,

regional events may be easily recognized by simply

carrying out an automatic location.

Apart from that, LPE and HYB are frequently con-

fused with ROC. Besides the reasons earlier discussed,

this failure may be explained as the result of the fact

that ROC form a rather heterogeneous class. Luckett et

al. (2002) identified three subclasses of rockfalls based

on waveforms and frequency content: (i) rockfall sig-

nals with dominant frequencies above 2 Hz, (ii) rockfall

signals with significant contributions of energy radia-

tion between 1 and 2 Hz, and (iii) rockfall signals where

the energy radiation at 1–2 Hz starts before the rest of

the signal (the class Long-Period Events+Rockfall

used in Langer et al., 2003a,b and then dropped

here). Following Luckett et al. (2002), there is no
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simple relation between the frequency content of rock-

fall signals and the speed of dome growth, but there

seems to be a link between dome growth and the

percentage of energy of the rockfall signals below 2

Hz. Luckett et al. (2002) speculate that two separate

sources contributing to the rockfall signals may exist.

The high-frequency part above 2 Hz then may represent

the radiation due to the material tumbling downhill,

whereas the low-frequency signal would be generated

by resonance phenomena similar to Long-Period or

Hybrid events. In this context, one must expect that

the results of the automatic classification are affected by

these intrinsic difficulties for separating signal sources.

In other words, automatic classification is valuable tool

not only for its success in the identification of the

majority of the transients, but also in the context of

the a-posteriori analysis of failures, shedding light on

the intrinsic difficulties in separating sources. We there-

fore recommend that automatic classification is applied

to MVO’s entire data set of transient events, as this will

provide a much clearer picture of the seismicity asso-

ciated with the eruptive activity of the Soufrière Hills

Volcano, and improve the quality of the scientific

advice MVO is able to give to the authorities on

Montserrat.
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