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Abstract

Time series recorded at active volcanoes are often incomplete and can consist of small data sets. Due to the complexity of

volcanic processes and inherent uncertainty, a probabilistic framework is needed for forecasting. A stochastic approach, named

DEVIN, was developed to perform forecasts of volcanic activity. DEVIN is a multivariate approach based on geostatistical

concepts which enables: (1) detection and quantification of time correlation using variograms, (2) identification of precursors by

parameter monitoring and (3) forecasting of specific volcanic events by Monte Carlo methods. The DEVIN approach was applied

using seismic data monitored from the Soufrière Hills Volcano (Montserrat). Forecasts were produced for the onset of dome growth

with the help of potential precursors identified by monitoring of variogram parameters. Using stochastic simulations of plausible

eruptive scenarios, these forecasts were expressed in terms of probability of occurrence. They constitute valuable input data as

required by probabilistic risk assessments.
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1. Introduction

Several authors have proposed forecasting

approaches using increases in seismicity (Kilburn

and Voight, 1998; Kilburn, 2003; Ortiz et al., 2003)

and ground deformation (Voight et al., 1998) as well

as integrated approaches (Voight et al., 2000). These

models enable forecasts of eruptive events at short

term (days to weeks). These deterministically based
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models do not integrate aleatory and epistemic uncer-

tainty (Woo, 1999) when forecasting volcanic erup-

tions. Uncertainty is mainly related to imperfect

knowledge of non-linear physical process inherent to

volcanic activity and to limited amount of monitoring

information. Therefore, a probabilistic formalism is

commonly required for the forecasting of volcanic

eruptions (Sparks, 2003). One example is the Event

Tree approach (e.g., Newhall and Hoblitt, 2002), re-

cently implemented and applied to Vesuvius (Marzoc-

chi et al., 2004). The importance of the use of

multivariate data has also been recently recognized

(e.g., Jaquet and Carniel, 2003), also with complemen-
al Research 153 (2006) 97–111
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tary approaches like pattern recognition (e.g., Sandri et

al., 2004).

The monitoring of active volcanoes using automatic

recording devices is particularly prone to data losses

because of hazardous geological conditions encoun-

tered in situ. However, most statistical methods applied

to the investigation of short to medium term volcano

dynamics require time series with fairly large data sets

without gaps in the observations.

In order to take account of uncertainty and small

data sets (with gaps), a stochastic approach, named

DEVIN (Deducing Eruption of Volcanoes In the Near

future), aiming at forecasting volcanic activity was

developed within the framework of the EU-project

MULTIMO (multi-disciplinary monitoring, modelling

and forecasting of volcanic hazard). DEVIN is a mul-

tivariate approach, based on geostatistical concepts

(Chilès and Delfiner, 1999), which enables character-

isation in the time domain of the behaviour for multi-

parametric (incomplete) time series sampled at active

volcanoes. Furthermore, the DEVIN approach can pro-

vide insight into natural processes involved in volcanic

eruptions. By using specific statistical tools, one can

detect correlation and cross correlation in time and

estimate time scales at which volcanic processes are

likely to occur. Such processes exhibiting memory of

their past activity can be linked to volcano dynamics

and foster conceptual advances which can be analysed

by numerical modelling of volcanic eruptions (Melnik

and Sparks, 2002).

First the theoretical concepts of the DEVIN ap-

proach are presented, followed by an application

using data from the Soufrière Hills Volcano, located

on the island of Montserrat (West Indies).

2. The DEVIN approach

With the aim of forecasting volcanic eruptions,

DEVIN includes the following stages: (a) detection of

correlation, (b) modelling of correlation, (c) identifica-

tion of precursors and (d) stochastic forecasting.

2.1. Detection of correlation

Occurrences of volcanic activity are often clustered

in time; i.e., volcanic events seem not to occur at

random, but rather suggest behaviour correlated in

time. The variogram is a statistical tool allowing the

detection and quantification of time correlation. The

variogram, popularized in Geostatistics by Matheron

(1962), was mainly applied to spatial problems. Jaquet

and Carniel (2001, 2003) have shown the capabilities of
variogram analysis for time series sampled at active

volcanoes.

The time series is interpreted as a realisation of a

stochastic process, Vi(t). Under the hypothesis of sta-

tionarity, the stochastic process is characterised by its

covariance Cii(s):

Cii sð Þ ¼ E Vi tð Þ � mið Þ Vi t þ sð Þ � mið Þ½ �

where s is the time interval, mi is the mean of Vi(t) and

E[] is the mathematical expectation. In comparison to

the covariance, the variogram only requires the statio-

narity of the increments of the stochastic process,

allowing a larger class of time behaviours to be de-

scribed. Under this hypothesis of translation invariance,

the so-called intrinsic hypothesis, the variogram cii(s) is
defined:

cii sð Þ ¼ 1

2
E Vi t þ sð Þ � Vi tð Þð Þ2
h i

If the variogram is bounded, it can be derived from

the covariance Cii(s):

cii sð Þ ¼ Cii 0ð Þ � Cii sð Þ

In the multivariate case, when K intrinsic stochastic

processes are under consideration, the detection and

quantification of cross correlation in time is performed

using the cross variogram cij(s), (Matheron, 1965):

cij sð Þ ¼ 1

2
E Vi t þ sð Þ � Vi tð Þð Þ Vj t þ sð Þ � Vj tð Þ

� �� �

where Vi(t), Vj(t) are stochastic processes (i, j=1, . . .,

K). And similarly, when all the variograms are

bounded, the cross covariance Cij(s) is expressed as

follows:

Cij sð Þ ¼ E ½ Vi tð Þ � mið Þ Vj t þ sð Þ � mj

� �
�

where mi, mj are the means of Vi(t), Vj(t).

The computation of variogram and cross variogram

is carried out from the time series using the following

expression:

cTij sð Þ ¼ 1

2ns

Xns

a¼1
Vi ta þ sð Þ � Vi tað Þð Þ Vj ta þ sð Þ

�

� Vj tað ÞÞ

where cij*(s) is the sample cross variogram and ns the

number of data pairs separated by a given time inter-

val. In case of irregular sampling interval or gaps in

the time series, the time interval is defined according

to classes.

Assuming correlation or cross correlation exist, var-

iogram and cross variograms allows quantifying the

scale at which these correlations occur in the time
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domain. These correspond in fact to the memory (or

persistence) of the past activity for the studied time

series. For forecasting purposes, time series are required

to exhibit persistent behaviour to be able to provide

potential precursors.

2.2. Modelling of correlation

Once the sample variogram is computed from the

data, a variogrammodel is fitted to the sample variogram

in order to parameterise the observed behaviour (Jaquet

and Carniel, 2001). Mathematical properties must be

fulfilled in order to consider functions as variogram

model (Chilès and Delfiner, 1999). Among the available

models, the following one enables the description of the

behaviour for time series sampled at active volcanoes:

cM sð Þ ¼ b0 þ b1
3

2

s
a
� 1

2

s3

a3

�
sVa

�

cM sð Þ ¼ b0 þ b1 sNa

where cM(s) is a model composed of a spherical vario-

gram with a discontinuity at the origin. The parameter b0
represents the intensity of the random component of the

time series. This component is mainly related to vari-

ability occurring below the sampling scale and to mea-

surement errors. The parameter b1 corresponds to the

intensity of the stochastic component for the time series.

Finally the parameter a is the time scale which quantifies

the persistence of the time series. Beyond this time scale,

the behaviour of the time series becomes uncorrelated in

time.

2.3. Identification of precursors

Time series with persistent behaviour represent po-

tential precursors. The evaluation of the forecasting

capabilities of these time series can be achieved by

parameter monitoring. It consists in identifying vario-

gram parameters which time behaviour is likely to be

precursory in relation to eruptive events. For a time

series, Vi(ta), sampled at point ta (a =1,. . ., N), para-
meters presenting potential as precursors of volcanic

activity can be estimated using a moving window ap-

proach as follows:

Bwa ¼ bwa
1

bwa
0 þ bwa

1

with wa ¼ ta þ
L

2
;

a ¼ 1; . . . ;N � L

Gwa ¼
Z
LdDt

cwa sð Þds
where wa is the time for the moving window and Ld Dt

its size. The parameter B specifies the relative intensity

of the stochastic components. This parameter varies

between 0 (random behaviour without memory) and 1

(persistent behaviour with memory). The parameter G,

integrating the total intensity (random and stochastic)

and the persistence for the time series, delivers a mea-

sure of the overall variability at the window scale.

In the presence of stationary stochastic processes,

the monitoring of potential delay effects offers precur-

sory potential. This parameter, corresponding to a shift

in time of the maximum correlation between two sto-

chastic processes, can be estimated using the asymmet-

rical behaviour with respect to the origin of the cross

covariance (Wackernagel, 2003; Jaquet and Carniel,

2001).

2.4. Stochastic forecasting

Parameter monitoring could be applied for forecast-

ing, but no uncertainty can be associated with such

forecasts. Therefore, on the basis of precursory behav-

iour identification, the likelihood for the evolution of

the time series is desired at short to medium term. The

realisation of such forecasts (with uncertainty) requires

the use of stochastic simulation on the basis of potential

evolution scenarios. The chosen stochastic simulation

method starts from the following decomposition (Chilès

and Delfiner, 1999):

Vi t0ð Þ ¼ V T
i t0ð Þ þ Vi t0ð Þ � V 4

i t0ð Þ
� �

where Vi*(t0) is the kriging estimator (Wackernagel,

2003) at time t0 using the data Vi(ta) and the term

[Vi(t0)�Vi*(t0)] is the kriging error. Since the true

value, Vi(t0), is unknown, one considers the same equa-

tion expressed in terms of simulation:

V s
i t0ð Þ ¼ V sT

i t0ð Þ þ V s
i t0ð Þ � Vs4

i t0ð Þ
h i

where Vi
s(t0) is the simulation of Vi(t0) and Vi

s*(t0) is

the kriging estimator using only the simulated values at

the points ta; then the kriging error is replaced by its

simulation:

V cs
i t0ð Þ ¼ V T

i t0ð Þ þ V s
i t0ð Þ � V sT

i t0ð Þ
h i

where Vi
cs(t0) is the conditional simulation. This method

allows generating simulations that honour the data points

of the time series. This conditioning property is impor-

tant when performing simulation of the future behaviour

of the time series; i.e., the simulation, starting off at the

last data point available for the time series, allows inte-
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gration of the latest characteristics of the data. A dilution

method (Lantuéjoul, 2002) is applied for the (non-con-

ditional) simulation, Vi
s(t0). Based on this method, simu-

lations of a Gaussian stochastic process are produced

with a spherical variogram. Since the data are usually not

Gaussian, simulations matching the observed histogram

are obtained using a Gaussian (bijective) transformation

(Wackernagel, 2003) applied to the time series.

Potential scenarios for the evolution of volcanic ac-

tivity can be considered using the following expansion:

Vcs
i t0ð Þ ¼ mi t0ð Þ þ V T

i;r t0ð Þ þ V s
i;r t0ð Þ � V sT

i;r t0ð Þ
h i

where mi(t)=E[Vi(t)] is the deterministic drift which

form is assumed (arbitrary) polynomial and the Vi,r

correspond to residuals with zero mean. The drift

becomes time dependent solely when performing fore-

casts. This possibility allows the introduction of external

knowledge for performing sensitivity studies with re-

spect to various scenarios of volcanic activity.

The likelihood of volcanic activity is assessed by

analysing the tendency of stochastic simulations of time

series to exceed given thresholds. Using a Monte Carlo

approach allows performing a large number of simula-

tions in order to estimate probability of threshold excee-

dance for a given future period. These estimates are

interpreted as forecasts (with uncertainty) of eruptive

scenarios for the selected period. These forecasts con-

stitute valuable input as needed for probabilistic risk

assessments.

3. Soufrière Hills Volcano

3.1. Seismic data

The Soufrière Hills eruption began in July 1995 and

continues to the time of writing (November 2004). The

MVO (Montserrat Volcano Observatory) digital seismic

network was installed in October 1996 (see Fig. 1), and

uses a mixture of broadband and short-period seism-

ometers, and 24-bit digital telemetry, providing a high

dynamic range of 100 dB for the short period and 144

dB for the broadband sensors. Both continuous and

triggered event data are recorded with a sampling rate

of 75 Hz. The broadband sensors are Guralp CMG-40T,

with a corner frequency of 0.033 Hz (30 s), while the

short period sensors are Integra LA-100, with a corner

frequency of 0.5 Hz.

The event parameters used include:

– The time the event triggered the acquisition sys-

tem (T).
– The classification assigned by a human analyst (C).

– The peak amplitude of the event (A).

– The cumulative energy (E).

– The dominant frequency (F).

– The pseudo-magnitude (M).

Both the beginning and the end of each triggered

event are determined by the triggering software; 10-s

pre-trigger and post-trigger windows are added to each.

Events are then manually classified (C) into the follow-

ing categories: volcano-tectonic earthquake, long-peri-

od earthquake, hybrid earthquake or rockfall signal

(Miller et al., 1998).

The signals are then deconvolved to remove the

frequency response of each instrument and high-pass

filtered at 0.5 Hz to minimize ocean micro-seismic

noise (which tends to dominate the broadband compo-

nents). Other event parameters are automatically calcu-

lated. Peak amplitude (A), cumulative energy (E) and

dominant frequency (F) are measured on each seismic

component. A is the peak amplitude expressed in m/s.

E is computed by summing up the squared seismic

amplitudes over the duration of the signal. F is the

dominant frequency, i.e., the frequency at which the

peak of the ground velocity amplitude spectrum occurs.

The energy, E, of a seismic signal varies over a few

orders of magnitude. It is therefore convenient to intro-

duce a pseudo-magnitude (M), which is also deter-

mined for each event, and is proportional to the

logarithm of the seismic energy measured at the vertical

component of the Windy Hill (MBWH) station (Fig. 1):

M ¼ as þ bslog Eð Þ

This single-component short-period station has had

the least amount of downtime since October 1996

(many other stations were destroyed by volcanic activ-

ity). Moreover, waveforms are usually seen most clear-

ly on this station (it is the best station for manual

classification), as signal to noise ratio is high. The

scale has been calibrated by fitting parameters as and

bs for a small number of relatively large events (mostly

recorded in 1997) against the magnitude scale that the

Seismic Research Unit uses for regional earthquakes.

However, it is a pseudo-magnitude scale, since in

general the volcanic events cannot be located, and

instead a location at sea-level directly beneath the

dome is assumed. Moreover, it is applied to rockfall

signals as well as to volcanic earthquakes (reasonable,

since we are just comparing recorded seismic energy).

On this scale, the detection magnitude is around

0.5, and the largest volcanic events recorded (hybrid

earthquakes in 1997) have a magnitude of around



Fig. 1. Island of Montserrat (West Indies) showing the location of stations of the MVO digital seismic network, as it was originally configured in

late 1996.
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3.5. MBWH is a particularly useful station for this

magnitude scale since it is sufficiently far from the

volcano (3.6 km) that even a variation of 0.6 km in

the source of volcanic events would produce magni-

tude variations of less than F0.2. Notwithstanding its

simplicity, this scale has been useful to MVO to

compare big single events to, for example, less sig-

nificant weak earthquake swarms that would have

appeared in reverse order of importance with a simple

counting procedure.
The activity each day can then be summarized by

the total number of events (of each type), and the

cumulative energy of those events, which again can

be expressed as a cumulative magnitude (of course,

magnitudes cannot be summed directly since they

are logarithms; it is E that is summed, and then

converted to a cumulative magnitude using the equa-

tion above). This allows MVO to say that on a

particular day there were 30 long-period earthquake

events, and that the seismic energy of those events
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was equivalent to a single M 2.0 earthquake (for

example).

For this study, the following time series were select-

ed for the period from 1 November 1996 to 28 February

2003 (see Fig. 2):

– Number of volcano-tectonic earthquakes per day

(VT).

– Number of hybrid earthquakes per day (H).

– Number of long-period earthquakes per day (LP).

– Number of rockfall signals per day (RF).

– Daily cumulative magnitude for volcano-tectonic

earthquakes (VT_cm).

– Daily cumulative magnitude for hybrid earthquakes

(H_cm).

– Daily cumulative magnitude for long-period earth-

quakes (LP_cm).
Fig. 2. Time series of volcano-tectonic (a), hybrid (b) and
– Daily cumulative magnitude for rockfall signals

(RF_cm).

3.2. Volcanic activity

The Soufrière Hills eruption can be divided into

several stages (Robertson et al., 2000; Sparks and

Young, 2002). The first stage involved phreatic explo-

sive activity between July and November 1995. The

andesite dome appeared in mid-November 1995 and

growth continued nearly continuously until March 1998

in the first major stage of dome growth. Our dataset

includes part of this dome growth stage from 1 No-

vember 1996 to 9 March 1998 (Fig. 2). A stage of dome

dormancy occurred between 10 March 1998 and 26

November 1999. A second stage of dome growth

then started and then finished on 13 July 2003 when
long-period earthquakes (c), and rockfall signals (d).



O. Jaquet et al. / Journal of Volcanology and Geothermal Research 153 (2006) 97–111 103
the volcano moved into a second period of dome dorman-

cy accompanied byminor unrest. Our dataset (Fig. 2) also

captures most of the second dome growth stage.

We now describe the dataset as it relates to the major

features of the activity in each of the stages. This

description provides some rationales for dividing the

dataset into time slices, which might relate to coherent

behaviour suitable for time series analysis. In the con-

text of the dataset the different seismic events can be

attributed to different aspects of volcanic activity. Vol-

cano-tectonic earthquakes (VT’s) appear in general to

reflect deeper disturbances in the plumbing system.

VT’s have been absent or at a very low rate during

dome growth, although short bursts of high rates of

VT’s can occur, rarely lasting more than a few days. In

many cases the bursts of VT activity can be linked with

some significant volcanic phenomenon, such as a major

dome collapse or a new surge in extrusion rate. Notably

VT activity is most pronounced in our dataset in the

stage of dome dormancy. Hybrid (H) and long-period

(LP) events are characteristic of dome growth. In our

dataset hybrid events dominated the first stage of dome

growth, long-period events were more prominent in the

second period of dome growth, and long-period events

were dominant in the period of dome dormancy, albeit

at a much lower rate than in periods of dome growth.

These relationships could be potentially affected by the

manual classification procedure applied in relation with

changes and/or errors in classification. In particular,

classification of VT events was affected during the

stage of dome dormancy; H and LP events were

concerned for stages of dome growth. The importance

of such effects on time series was evaluated using

statistical tools (cf. Section 3.4). In order to overcome

these problems, an automatic method for the classifica-

tion of seismic transients based on Artificial Neural

Networks was proposed for Soufrière Hills by Langer

et al. (2003). Since automatic classification results were

not available for the entire period of interest, we have

applied the data from the MVO manual classification

for this study.

The cause of hybrid and long-period events are still

uncertain, with recent interpretations favouring fracture

development and stick-slip processes along the margins

of the conduit due to flow of gas pressurised magma at

depths up to 2 km (Neuberg et al., 2006-this issue,

Wylie et al., 1999). Whether hybrid and long-periods

really constitute two separate families or there is a

continuum between these two end members is also

under debate. Sometimes the same event is classified

differently at different stations, but at the same time the

two families apparently show different behaviour. For
instance, hybrid events usually occur in swarms, while

long-period habitually do not. For this work we stick to

the classical MVO classification that keep these two

families separate. Rockfall (RF) events reflect dome

growth, although not in a simple proportional way,

since rockfall activity is controlled by not only extru-

sion rate but also by dome size and configuration

(Calder et al., 2002).

In the first dome growth stage the extrusion rate was

low (b1 m3/s) in November and December 1996

(Sparks et al., 1998) and this is reflected in low rockfall

and other seismic events. Extrusion rate picked up at

the end of December 1996 and continued at rates of

2–3 m3/s, with some fluctuations related to the em-

placement of distinct lobes of lava (Watts et al.,

2002). This elevated activity is manifested in the in-

creased rates of hybrid, long-period and rockfall activ-

ity (Fig. 2). The extrusion rate increased markedly in

May 1997 to values of 7–8 m3/s (Sparks et al., 1998).

This period was the most vigorous of the eruption with

several major dome collapses and two episodes of

repetitive Vulcanian explosions in early August and

then 22 September to 22 October 1997. Seismic and

tilt data show that there were well-defined pulses of

activity each lasting 6 to 7 weeks (Voight et al., 1999;

Sparks and Young, 2002). Pulses were marked by

abrupt increases in seismicity, which can be seen in

the hybrid data (Fig. 2) and by major changes in the

pattern of deformation recorded by tiltmeters close to

the dome (Voight et al., 1999). Major dome collapses

occurred within a few hours to a few days of the onset

of a pulse and at the time this periodic behaviour was

used by the MVO to anticipate dangerous situations.

The stage of dome dormancy was marked by much

volcanic unrest (Norton et al., 2002). Several dome

collapses occurred including a large (30 million m3)

collapse on 3 July 1998. 123 explosions were recorded,

gas emissions continued at levels much higher than

could be accounted for by residual degassing of the

magma in the conduit (Edmonds et al., 2003), and

ground deformation was consistent with a pressurising

magma chamber at depths of 5 km or more (Norton et

al., 2002). In this period VT activity was high, rates of

hybrid events were negligible and long-period activity

continued at a low rate (Fig. 2). Rockfall activity was

also lower but continued, reflecting the instability of the

remnants of the dome formed in the first stage.

The second stage of dome growth was heralded by a

hybrid swarm a few weeks before the new dome

appeared (Norton et al., 2002). Extrusion rate was esti-

mated by MVO to have been in the range 2–3 m3/s

on average. In general extrusion was steadier than in



able 2

inear correlation coefficients (1 November 1996 to 28 February

003)

ime series VT H LP RF VT_cm H_cm LP_cm RF_cm

T 1 �0.1 �0.1 �0.2 0.7 �0.1 �0.2 �0.2
1 0.1 0.0 �0.1 0.6 0.06 �0.3

P 1 0.5 �0.2 0.1 0.7 0.4

F 1 �0.3 0.0 0.6 0.7

T_cm 1 �0.1 �0.3 �0.3
_cm 1 0.1 0.1

P_cm 1 0.6

F_cm 1
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the first stage. Nevertheless seismic indicators of dome

growth suggest significant fluctuations. A characteristic

pattern was that hybrid earthquake swarms often oc-

curred a few days prior to an increase in the rate of

extrusion being observed. Since the direction of extru-

sion often changed at such times, and increased levels of

dome instability (rockfall activity) soon followed, these

hybrid swarms became important warning signals for

MVO. For the dataset there were also some short peri-

ods of dome dormancy lasting up to several weeks and

these correspond to periods of relative low long-period

and hybrid event rates. In the period covered by the

dataset large collapses occurred on 20 March 2000

(Carn et al., 2004) and on 29 July 2001. These collapses

were followed by several weeks of lower rockfall activ-

ity as a consequence of the small size of the active dome

growing in the collapse scar.

Among the complex sequences of events that have

occurred during the course of the Soufrière Hills erup-

tion, we have decided to choose the onset of the dome

growth in November 1999 as event to test our probabi-

listic approach to forecasting. The choice of this impor-

tant event was motivated by: (a) the correlated effects

likely to be expressed in terms of seismic events and (b)

the implications of forecasting the onset of the dome

growth in relation to probabilistic risk assessments.

3.3. Statistical analysis

The calculated statistics for the different events per

day and their cumulative magnitude are given in Table

1. These time series cover a period of about six years.

During this period, few acquisition problems were en-

countered which explain the low percentage of missing

values (equal to 5%) observed. The VT and H events

present the highest coefficient of variation as well as the

largest percentage of zero values. The occurrence of VT

and H events being almost always organised in swarms

explain these results.
Table 1

Statistics for the time series (1 November 1996 to 28 February 2003)

Time series Minimum Maximum Mean Standard

deviation

VT 0 139 2.4 6.3

H 0 769 14.7 51.9

LP 0 97 5.6 8.6

RF 0 209 44.5 44.1

VT_cm 0.0 4.2 0.6 0.9

H_cm 0.0 5.1 1.1 1.2

LP_cm 0.0 4.0 1.1 1.0

RF_cm 0.0 5.2 2.4 0.8
T

L

2

T

V

H

L

R

V

H

L

R

The classical linear correlation coefficients (Priest-

ley, 1981) were calculated for all possible pairs of time

series (see Table 2). The different event occurrences

present remarkable correlations (ca. 0.7) with their

respective cumulative magnitude. The only other no-

ticeable correlated pairs (greater or equal to 0.5) be-

tween different types of events are: LP–RF, LP_cm–RF

and LP_cm–RF_cm. This correlation between LP and

RF events could be related to specific dome activity;

e.g., a flurry of LP and RF events heralding the growth

of a new dome lobe.

3.4. Detection of correlation

The analysis of correlation and cross correlation in

time was performed using, respectively, the variogram

for individual times series and the cross variogram for

pairs of time series. The variogram characterises statis-

tically the differences between values of a time series,

at distinct points in time, as the time interval separating

these points increases. When correlation occurs, values

taken at points at small time intervals are likely to be

more similar than values taken at larger intervals in

time. This persistent behaviour for a time series

expresses the memory of its past activity. Characteris-

tics of persistence are needed for a time series to be

considered a potential precursor.
Variance Coeff. of

variation

Number of

sampled days

Percentage

of zeros

40.0 2.6 2199 57

2690.1 3.5 2199 44

73.9 1.5 2199 35

1945.6 1.0 2199 1

0.7 1.3 2199 57

1.3 1.1 2199 44

1.0 0.9 2199 35

0.6 0.3 2199 1
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Differences in variability of event occurrences be-

tween stages of dome growth and dome dormancy were

observed over the 6-year period (cf. Fig. 2). Therefore,

the variograms were calculated by periods of dome

growth and dome dormancy for the time series VT,

H, LP and RF events (see Fig. 3).

During stages of dome growth, the initial (growing)

behaviour of the variograms for H, LP and RF events

were followed by a more stable part fluctuating around

the variance of the data (dashed line). For the first stage

of dome growth (Nov. 96 to Mar. 98), the time scale

corresponding to the first stabilisation level of the

variogram (around the variance) was estimated to be

between 20 and 40 days for H, LP and RF events.

These time series exhibit a persistent behaviour; i.e.,

the activity occurring today presents some similarity

with the activity of the 3–5 weeks before. Such behav-

iour was not observed for VT events the variogram for

which showed no remarkable initial (growing) behav-

iour as it starts at a much higher level in comparison to

the variograms of the other events. The VT variograms

are strongly dominated by a random component and

only exhibit a stochastic component with a weak inten-

sity. Therefore, the behaviour of the VT event was not

considered as persistent. Variograms for the second

stage of dome growth (Nov. 99 to Feb. 03), yield

similar results, except for the time scale associated

with the RF events which is significantly longer, at

about 150 days.

The results can be interpreted in terms of two con-

trasting time-scales observable from geophysical data.

Voight et al. (1999) observed cyclic patterns of seis-

micity (largely LP and H) and dome growth (causing

RF signals) that had three scales of several hours

(4–36 h). Also there are 6–7 weeks patterns of en-

hanced activity, which were especially prominent in

1997. The time scales of up to 40 days are related to

this dynamical periodicity.

For the stage of dome dormancy, no structured

behaviour was observed for VT, H and LP events.

The only persistent behaviour was displayed by the

RF events with a time scale between 30 and 60 days.

For the different dome stages, similar types of per-

sistent behaviour were also detected for the time series

of daily cumulative magnitude. The absence of persis-

tent behaviour during dormancy could be related to

classification problems for the VT events (cf. Section

3.1) and to the low level of seismic activity for the H

and LP events during that period.

The calculation of cross variograms by period was

performed on the basis of the largest correlation coeffi-

cients. The pairs RF–LP and LP–LP_cm events were
selected due to their persistent behaviour during periods

of dome growth (see Fig. 4). The time scales for the

first period of dome growth were equal to approximate-

ly 20 days for the pairs RF–LP and LP–LP_cm and

then these time scales increased to about 70 to 100 days

for the second period of dome growth.

3.5. Precursor identification

Time series with persistent behaviour represent po-

tential precursors. Their capability, however, needs to

be evaluated in relation to forecasting specific eruptive

events. Precursor identification was achieved by the

direct monitoring of time series and the monitoring of

parameters estimated from time series prior to the onset

of dome growth in November 1999.

The H events constitute the only analysed time

series presenting a remarkable precursory behaviour

detectable by direct monitoring. After an extended

period of quiescence, H activity has recommenced 2

to 3 weeks before the appearance of the new dome in

November 1999 (cf. Fig. 2). Since the H events present

a direct link with the volcanic activity; their time scale

(estimated at ca. 20 days, cf. Section 3.4) delivers an

estimate for the time elapsed between the start of H

activity and the likelihood for the onset of the dome

growth.

Monitoring changes in parameters was performed by

(cross) variogram calculation using a moving window

approach. Instead of calculating the (cross) variogram

for the entire period of dome growth (or dormancy), it

was computed by applying a moving window of 100

days along the entire time series. By estimating para-

meters for each (cross) variogram, the evolution of the

behaviour for the time series can be monitored in terms

of persistence and intensity.

This approach was applied for the RF events and the

time series LP and LP_cm. In both cases, the monitored

(cross) variogram parameters display behaviours with

higher parameters values for period of dome growths in

comparison to the period of dome dormancy (see Fig. 5).

For the RF events, the calculated variogram parameter B

(cf. Section 2.3) indicates the relative intensity for the

stochastic component varying between 0 (random) and

1 (persistent). For the time series LP and LP_cm, the

cross variogram parameter G, obtained by integration of

the variogram at the window scale, delivers a measure

of the overall cross variability between the time series

at the window scale (cf. Section 2.3).

Both monitored parameters exhibit an upward

trend occurring months before the onset of the

dome growth in November 1999 (cf. Fig. 5). These



Fig. 3. Variograms for time series VT, H, LP and RF during episodes of dome growth Nov. 96–Mar. 98 and Nov. 99–Feb. 03) and dome dormancy

(Mar. 98–Nov. 99).
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Fig. 5. Forecasting the onset of dome growth using univariate parameter monitoring estimated from rockfall events and multivariate parameter

monitoring estimated from long-period events and their cumulative magnitude.

Fig. 4. Cross variograms for time series RF–LP and LP–LP_cm during episodes of dome growth Nov. 96–Mar. 98 and Nov. 99–Feb. 03) and dome

dormancy (Mar. 98–Nov. 99).
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trends can be considered as precursory behaviours

indicating changes in the volcanic edifice in terms

of persistent behaviour for RF events as well as in

terms of correlation between the time series LP and

LP_cm. In other words—although we cannot obvi-

ously prove that this is the typical dynamical devel-

opment for all eruptions, even of the same kind—in

the analysed case as the onset of the dome growth

approaches, a more structured behaviour of the vol-
Fig. 6. Stochastic simulations (red) of rockfalls events from 19 July 1999

horizontal (dashed) line corresponds to threshold used for estimating probab

the references to colour in this figure legend, the reader is referred to the w
cano dynamics emerges, expressed by more persistent

and correlated seismic signatures.

3.6. Stochastic forecasting

On the basis of the precursory behaviour encoun-

tered for the RF events, a period of ca. 4 months (19

July 1999 to 26 November 1999) was selected for

stochastic simulation. The objective is the assessment
to 26 November 1999 for scenario I and scenario II (with drift). The

ility of exceedance by Monte Carlo simulations. (For interpretation of

eb version of this article.)
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of the likelihood of the onset of dome growth for the

next 4 months under the assumption that monitoring

data were available up to mid-July. Since the date for

the onset of dome growth is known (27 November

1999), the obtained forecasts for the chosen period

can be compared to the observed reality.

Following the stage of dome dormancy, several

scenarios are plausible in terms of RF activity. Simple

scenarios were chosen on the basis of the observed

behaviour for the RF time series: (a) scenario I with a

sudden change in RF activity based on the behaviour of

the first dome growth stage and (b) scenario II with a

gradual (linear) change in RF activity, occurring over a

2 months period, and associated with the behaviour of

the dome dormancy stage.

The median of RF events during the first stage of

dome growth was selected as the threshold above which

dome growth could occur. This threshold, estimated

over a period of more than one year, seems an appro-

priate choice when comparing the variability of RF

events during the stages of dome growth and dome

dormancy (1 November 1996 to 26 November 1999;

cf. Fig. 2).

A Monte Carlo approach was performed for the two

scenarios (see Fig. 6); i.e., for each scenario 100 sto-

chastic simulations were carried out in order to estimate

probability of RF exceedance in relation to the thresh-

old. The stochastic simulations of scenario I match the

variogram and the data histogram of the stage of dome

growth. For the scenario II, a linear drift was fitted

between the end episode of the dome growth stage

(February 1998) and the beginning episode of the

dome dormancy stage (March 1998). This drift

expresses the decrease in the mean number of RF

events per day at a time scale of ca. 2 months (cf.

Section 3.4). A similar drift (with a positive slope)

was assumed to represent the increase in the mean

number of RF events per day leading to a stage of

dome growth. To this drift, stochastic simulations of

the residual for the number of RF events per day (cf.

Section 2.4) were added that matched the variogram for

the stage of dome dormancy.

The results of the Monte Carlo stochastic simula-

tions deliver estimates of exceedance probability. These
Table 3

Scenarios and probability of occurrences

Dome growth Dome dormancy

Scenario I Variogram (a =37 day)1 –

Scenario II – Variogram (a =62 day)1

1 a: time scale.
estimates can be interpreted as probability of occur-

rence for the onset of the dome growth over a period

of 4 months (Table 3). For the two scenarios, the

estimated probability reveals the strong potential for

the onset of dome growth which in effect has occurred

end of November 1999. These estimated probabilities,

reflecting the likelihood for volcanic activity, corre-

spond to an uncertainty measure of hazard occurrence

for a given period. Using these probabilities, risk anal-

ysis can then be performed with an outcome expressed

in terms of life and property losses. These results lead

to decision making; e.g., an evacuation could be carried

out even in the presence of relatively low probabilities

when the calculated risk becomes unacceptable for the

population. Therefore, the selection of a hazard proba-

bility threshold is case dependent and can only be

assessed through risk assessments.

4. Conclusions and perspectives

The DEVIN approach aiming at forecasting volcanic

activity using stochastic methods relies on statistical

analysis and direct characterisation of the behaviour of

multi-parametric time series sampled at actives volca-

noes. With the help of variogram and cross variogram,

persistent behaviours for seismic time series were

detected for Soufrière Hills Volcano. Some of these

behaviours could be related to specific types of volcanic

activity such as stages of dome growth and dome dor-

mancy. By monitoring specific variograms and cross

variogram parameters estimated respectively from the

time series RF events; and LP events and LP_cm, pre-

cursory behaviours were identified that could indicates

the onset of the dome growth for Soufrière Hills Volcano.

For forecasting activity at Soufrière Hills Volcano,

H, LP and RF events constitute valuable pieces of

information. Besides the precursory behaviour (weeks

ahead) of H events, RF events are of special interest,

because their behaviour remains persistent during the

period of dome dormancy. Therefore, the parameter

monitoring of RF events and their correlation with LP

events are of prime importance due to their precursory

behaviour of activity likely to occur at Soufrière Hills

Volcano.
Drift Period of [month] Probability of forecast

dome growth onset

– 4 0.57

Linear 4 0.76
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Estimates of probability for the onset of dome

growth were obtained using a Monte Carlo approach

for two plausible scenarios. The probability values

(obtained for a 4 months period) reflect the level of

uncertainty with respect to the occurrence of potential

dome activity at Soufrière Hills Volcano. These values

constitute essential input for risk assessments in relation

to the state of a volcano capable of a new growth stage.

By combining parameter monitoring and stochastic

simulations, the DEVIN approach allows forecasts to

be performed at short to medium term at active volca-

noes while accounting with the associated uncertainty.

The latter aspect is essential since it constitutes a major

input for risk analysis studies. In particular, such valu-

able input can be integrated to the formalism of gener-

alised Bayesian Belief Networks (BBN) as applied by

Aspinall et al. (2003). The BBN principle constitutes an

increasingly accepted approach for performing deci-

sion-making under uncertainty. Using such an approach,

capable of accommodating any forecasting results (see,

e.g., Aspinall et al., 2006-this issue), should constrain the

range of forecast uncertainty when performing decision-

making during volcanic crises.

Further DEVIN developments will include evalu-

ating other types of multivariate parameters for mon-

itoring time series in relation to dome stages and

other volcanic events (e.g., dome collapse, Vulcanian

eruptions, etc.) occurring at Soufrière Hills Volcano.

In terms of forecasting, multivariate methods for sto-

chastic simulations will be investigated in order to

produce estimate of probability accounting for cross

correlation between time series with potential precur-

sory behaviour.
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