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[1] Seismic activity at Soufrière Hills volcano is
characterized by a variety of transients, such as tectonic
earthquakes, long-period events, hybrid events, and
rockfalls. The huge quantity of seismic data daily
recorded on the volcano makes the application of
automatic processing highly recommendable. We propose
a method of supervised classification of the transients based
on Artificial Neural Networks (ANN), which may be useful
for processing the large data sets piled up in the past.
Particularly, data sets recorded before the climactic
eruptions from 1995 to 2002 may allow us to reconstruct
the distribution of the different classes of seismic transients
in time. We believe that this analysis may give useful
insights into impending eruptive scenarios. The good
performance of the ANN with 70% of transients correctly
classified in a test set of 156 data, along with the
opportunity to revise the misfits, make ANN a powerful
tool for data processing. INDEX TERMS: 7280 Seismology:

Volcano seismology (8419); 8419 Volcanology: Eruption

monitoring (7280); 8499 Volcanology: General or miscellaneous.
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1. Introduction

[2] Modern seismic monitoring of volcanoes is based on
continuous data acquisition. Seismic signals on active
volcanoes are indeed characterized by a wide variety of
transients as well as a more or less persistent form of energy
radiation, called volcanic tremor. Continuity and complete-
ness of the data are essential conditions to relate seismic
events to volcanic activity, and constrain models for erup-
tive scenarios. This brings along the problem of huge data
masses to process and archive, on the order of 100 MB per
day per seismic station. In classical earthquake seismology
the problem of large data sets is partly solved by the
compilation of data bases containing physically meaningful
parameters, such as earthquake magnitude, seismic moment,
moment tensor, stress drop, and so forth. Conversely, as the
physical characteristics of the seismic sources acting in
volcanoes remain controversial, data reduction and param-
eter extraction in volcano seismology have been hitherto
based on signal characteristics.

[3] Moving on from these considerations, we test an
automatic process for the classification of seismic transients
recorded at Soufrière Hills volcano on the island of Mon-
tserrat, West Indies (Figure 1). The volcano unrest at
Montserrat in 1995 after 400 years of relative quiescence
has yielded climactic eruptions, which have repetitively led
the local authorities to the evacuation of the southern half of
the island. The dramatic events related to the eruptive
activity from 1995 to 1999 [Druitt and Kokelaar, 2002]
and the lava dome growth since, make Montserrat one of the
most dangerous but also best monitored volcanic areas
worldwide [MVO Team, 1997].
[4] The Soufrière Hills form an andesitic volcanic com-

plex where seismic energy radiation is characterized by
numerous transient signals. The various seismic transients
recorded in the eruptive periods aforementioned offer a key
to interpret the behavior of the volcanic system and assess
seismic scenarios leading to impending eruptive episodes.
These signals have been grouped according to their wave-
form, frequency content, and duration [Miller et al., 1998].
Here we focus our attention on the classification of tran-
sients which in the Montserrat Volcano Observatory (MVO)
terminology are referred to as: (i) volcano-tectonic events
(hereafter VT), i.e., earthquakes occurring within the vol-
cano edifice; (ii) regional events (REG), local earthquakes
with origin outside the volcano edifice; (iii) long-period
events (LPE) [e.g., Baptie et al., 2002]; (iv) hybrid events
(HYB), i.e., seismic signals with signatures in-between
volcano-tectonic events and long-period events [White et
al., 1998], and (v) rockfalls (ROC) [Luckett et al., 2002]
(Figure 2). Additionally, we consider a sixth class of events
(LPE + ROC) formed by a LPE shortly preceding a rockfall
(Figure 2f ). We tackle our task in the sense of a classifica-
tion with supervisor, exploiting the expertise of human
operators of the MVO. In so doing, we chose Artificial
Neural Networks (ANN) as they have proven to be a
versatile and straightforward tool for supervised classifica-
tion [e.g., Rumelhart et al., 1986]. Such a supervised
classification allows the ANN to learn from a number of
examples with a given class membership—defined by an
expert—and to generalize their main characteristics.

2. Data Set

[5] The data set we analyze covers a time span which
ranges from 2000 to 2002. The seismic signals were
recorded at 9 digital stations belonging to the permanent
seismic network run by MVO (Figure 1). The stations were
equipped with Guralp CMG-40T 3C broadband sensors,
having a bandwidth between 0.03 and 30 Hz, and dynamic
range of 144 dB. Additionally, Integra LA-100, vertical
component, 1 Hz seismometers were also used. The sam-
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pling rate was 75 Hz. Signals from each station were
telemetered to MVO, where they were recorded on a
PC-based digital acquisition system.
[6] For our application we use 336 seismic records,

considering the vertical component only. These records
were originally divided into the six classes aforementioned
by MVO’s seismologists. The time series have durations
from ca. one minute to several minutes and are representa-
tive of the large majority of the seismic transients usually
recorded. It is worth noting that we chose to use the time
series recorded at the different stations for each single
transient as separate examples, i.e, the classification is
carried out considering each single channel. This is certainly
different from what is done by a human operator, who
usually assigns different weights to the stations. The use of
the single transients as separate examples permits us to
explore the performance of the ANN at each station. The
analysis of this performance provides information regarding
whether reference stations are needed for the future appli-
cations of the ANN, and in that case which may be the most
suitable stations.

3. Application of the ANN

[7] The architecture of ANN we use for our application is
the so-called Multilayer Perceptron [Rumelhart et al.,
1986]. This ANN has the advantage to define discrimination
functions of arbitrary complexity in principle, and the

procedures used for the estimation of the discrimination
function do not require any a-priori knowledge about its
mathematical structure.
[8] For the set-up of the ANN, we carry out the three

following steps: (i) choice of an ANN topology, (ii) iden-
tification of representative examples of the transients whose
class membership is known, (iii) definition of a suitable
form of data representation. We chose a simple topology
consisting of three layers of nodes: an input layer, where the
input data vectors are stored, a hidden layer, where a
nonlinear weighting function is applied and which is nec-
essary to guarantee the generality of the discrimination
function, and the output layer representing the resulting
vector of the ANN application. Consequently, we consider
topologies in the form U-X-6, where U and X are the
number of neurons in the input and hidden layers, respec-
tively, and 6 are the classes of transients to identify. For
each single transient, the output vectors contain the class
memberships of the signals calculated with the ANN, which
are compared to the target values defined by the human
operator. We define our target output by assigning ‘‘1’’ to
the class which the signal belongs to, and ‘‘0’’ to the other
classes.
[9] Formally the classification is carried out by applying

a mapping function to the input vector U (which represents
our signals) to an output vector Y (here the class member-
ship values). The mapping function is given by

ŶkðUÞ ¼
XNH

j¼1

cjsðwT
j � Uþ tjÞ þ c0

where Ŷk is the k-th element ofYestimated by the network,U
is the input vector, wj are the vectors of the weights between
input and hidden layer, cj are the weights between hidden and
output layer, tj are biases, s(�) is the sigmoid activation
function s (z) = 1/(1 + e�z), c0 is a constant. Previous studies

Figure 2. Typical waveforms of the six classes of
transients: (a) VT; (b) REG; (c) LPE; (d) HYB; (e) ROC;
and (f ) LPE + ROC. Year, month, day, hour and minute at
the onset of each transient are indicated at the upper right of
each trace.

Figure 1. Sketch map of Montserrat. Stars mark location
of the stations belonging to the permanent seismic network.
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[e.g., Falsaperla et al., 1996; Langer and Falsaperla, 2003]
showed that the ANN performance improves when the length
of the input data vectors can be limited and phase alignment
problems are avoided. Additionally, it is convenient to use an
information code which provides a constant length of all the
input data vectors, regardless of the original signal duration.
We use a combination of the autocorrelation function, statis-
tical parameters (such as the sums of the amplitude signal A),
and amplitude ratio of the bandpass filtered (between 0.2 and
0.6 Hz) and unfiltered traces, as input data vectors. We found
that the filtered traces were not affected by noise due to sea-
microseisms, whose spectral maxima are expected between
0.09 and 0.18 Hz in the ocean [Kenneth, 2001]. The auto-

correlation functions (acf ) represent the spectral content of
the signal. The acf were obtained in the frequency domain
using a window length of 16384 points for the FFT, and
taking the first n points. Being zero-phase functions, they
always have their maximum at the beginning of the trace.
This avoids the aforementioned problems of phase align-
ment. The sums of the amplitude over A, A2, A3, A4 resemble
statistical moments. They should help to distinguish brief,
peaked transients (like VT) from signals with long duration
(like ROC), but having the same frequency content. Finally,
the amplitude relations may help to separate classes showing
a combination of signals, such as LPE + ROC. We divide our
data set of 336 records in two groups, by randomly selecting a
training set with 180 records, which was used for the
estimation of the ANN coefficients, and a test set with 156
records. The random selection makes reasonable the assump-
tion that training and test data sets belong to the same parent
population, as requested by theory.
[10] The only parameter controlling the complexity of the

ANNand its discrimination function is the number of nodes in
the hidden layer, for the length of the input and output layers is
defined by the data we use and the number of classes to
identify, respectively. The size of the hidden layer is usually
determined by an iterative trial and error procedure. Based on
the training data set, we iteratively derive the coefficients of
the ANN according to a scheme known as back-error prop-
agation [Werbos, 1974]. The latter minimizes the error
defined by the root-mean square differences between target
and calculated output. During the iterative procedure, we
simultaneously test the performance of the ANNwith the test
data set, containing transients which have not being used in
the training set. The analysis of the error curves obtained with
training and test data sets is a key for the choice of the final
ANN’s topology. A large number of nodes in the hidden layer
usually yields low errors for the training data set and high
errors for the test data set (Figure 3). This effect is known as
overfitting. In the following, we discuss how the performance
of the ANN clearly shows the effects of overfitting whether
we use too many nodes in the hidden layer (Table 1).

4. Results and A-Posteriori Inspection of the
Misfits

[11] Based on inspection of the output vectors of the
training data set, we obtain the best performance of the

Figure 3. Error curves for training (a); and test (b) of the
ANN according to various topologies. Training error curves
and test error curves are labeled with TRN_U-X-6 and
TST_U-X-6, respectively.

Table 1a. Topology 50-5-6

Training set

VT REG LPE HYB ROC LPE ++� ROC

17 0 0 0 0 1
5 39 1 0 3 0
0 0 12 0 0 5
0 0 4 36 0 0
0 0 2 1 39 10
0 0 0 0 0 5

Test set

15 2 0 0 1 1
6 36 1 5 3 1
0 0 6 2 3 2
1 1 3 16 2 1
0 0 1 2 32 10
0 0 0 1 2 2

Table 1b. Topology 50-8-6

Training set

VT REG LPE HYB ROC LPE ++� ROC

21 0 0 0 0 0
1 39 0 0 0 0
0 0 12 0 0 2
0 0 3 35 0 0
0 0 3 2 39 2
0 0 1 0 3 17!

Test set

11 12 0 0 0 0
11 26 0 3 1 0
0 1 5 1 3 3
0 0 3 15 4 1
0 0 2 4 25 4
0 0 1 2 9 9
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ANN with the topology 300-5-6, (295 + 5 neurons between
acf and the other selected parameters, 5 neurons for the
hidden layer, 6 neurons for output). However, the results of
the test set are the worst among all tested configurations.
The topology which yields the best performance for the test
data set is the 50-5-6 (45 + 5 neurons between acf and other
parameters, 5 neurons for the hidden layer, 6 neurons for
output). We report the results of the training and test data
sets for this topology in Table 1a. The class membership
assigned by the ANN was defined by taking the class where
the highest score was encountered. The generic aij entry in
Table 1 represents the number of transients classified as
belonging to the ith class (i 2 HYB, LPE, LPE + ROC,
REG, ROC, VT), and recognized as belonging to the jth
class ( j 2 HYB, LPE, LPE + ROC, REG, ROC, VT) by the
ANN. Hence, the elements of the principal diagonal repre-
sent the number of transients correctly classified by the
ANN in each class. Using the topology 50-5-6 the expected
classification is matched for about 70% of the test data
set, with 107 out of 156 transients correctly classified
(Table 1a). A slightly larger ANN (50-8-6) provides excel-
lent results during the training phase, whereas the perfor-
mance of the test is, on the whole, slightly worse with 91
out of 156 transients correctly classified (Table 1b). How-
ever, for specific classes such as LPE + ROC, the success of
the topology 50-8-6 for the test set is higher than that of the
topology 50-5-6.
[12] A success rate of 70% is good enough to be

considered encouraging. Nevertheless, we believe that the
30% failure may be dramatically reduced with the help of
the performance analysis in the misfits. For example, the
lower errors obtained with the topology 50-8-6 with respect
to the 50-5-6 for the class LPE + ROC during the training
are a hint that the 50-5-6 is not sufficient for resolving this
class. The comparison of the results for the two topologies
(Table 1), leads us to conclude that we should avoid
problems of overfitting by augmenting the number of
neurons in the hidden layer along with the overall number
of data. As a side effect, an augmented training and test data
set enhances the statistical significance of the results
obtained with the ANN. Systematic misfits may be attrib-
uted to a not well constrained distinction between certain
classes. This is the case of the VT which is often confused
with REG (Table 1). This misfit, which is related to the
choice of the examples for the learning and training of the
ANN, is strongly affected by the station location and its

distance from the source. A solution for the correct separa-
tion of transients such as VT and REG might be the use of
some reference station/s with distinct S-P arrival times for
each class. A similar solution should solve problems of
erroneous classification of HYB, LPE, and ROC, which
might be confused for propagation and/or site effects
affecting the records. The example of LPE + ROC depicted
in Figure 4 highlights how the seismic signature may
undergo remarkable changes from station to station.
[13] For the limited data set analyzed here, the stations

have more or less the same overall performance, besides
MBLG (Figure 1), which has significantly lower misfits
than the average and may be a good candidate for becoming
a key station.

5. Conclusions

[14] Automatic classification using ANN has the advan-
tage of being objective, in the sense that it is reproducible. It
does not depend on the criteria adopted by human operators
which may differ from person to person. The a-posteriori
analysis helps to verify the significance of the a-priori
classification and the criteria used. We surmise that the
good performance of the ANN for the classification of
seismic transients recorded at Soufrière Hills—with 70%
of the transients correctly classified in a test data set of
156—may further improve using larger data sets both for
the training and test of the ANN to avoid problems of
overfitting.
[15] Our analysis of the misfits suggests the use of

reference stations to separate classes that the ANN cannot
resolve efficiently. According to our findings, MBLG may
be a good reference station. The inspection of the misfits
inevitably yields a continuous feedback between the per-
formance of the ANN and what we learn from it as well as
from other independent analyses. For example, hypocentral
location and observations on the rockfalls may focus the
ANN user on stations which can give a better resolution of
the seismic source/s. Given the black box nature of the
ANN, it is recommendable to check its performance from
time to time. Encountering unexpected difficulties in the
classification could mean that new kinds of transients have
appeared and a new training of the ANN with enlarged data
sets is necessary. In this light, the classification of seismic
transients should not be seen as a static approach, but it
achieves dynamic aspects. Our findings encourage this
application to the large data set of approximately 184,000
transients recorded on MVO’s analog seismic network
between July 1995 and March 2001 and associated with
the eruption of the Soufrière Hills. An analysis of this data
set would take far too long to do manually, and is an ideal
application for a neural network.
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